BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22543477)

  • 1. Improving sap flux density measurements by correctly determining thermal diffusivity, differentiating between bound and unbound water.
    Vandegehuchte MW; Steppe K
    Tree Physiol; 2012 Jul; 32(7):930-42. PubMed ID: 22543477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of the correct heat conduction-convection equation as basis for heat-pulse sap flow methods in anisotropic wood.
    Vandegehuchte MW; Steppe K
    J Exp Bot; 2012 May; 63(8):2833-9. PubMed ID: 22407648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.
    Vandegehuchte MW; Steppe K
    New Phytol; 2012 Oct; 196(1):306-317. PubMed ID: 22816502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 2. Laboratory validation.
    Reyes-Acosta JL; Vandegehuchte MW; Steppe K; Lubczynski MW
    Tree Physiol; 2012 Jul; 32(7):913-29. PubMed ID: 22659459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel, cyclic heat dissipation method for the correction of natural temperature gradients in sap flow measurements. Part 1. Theory and application.
    Lubczynski MW; Chavarro-Rincon D; Roy J
    Tree Physiol; 2012 Jul; 32(7):894-912. PubMed ID: 22611074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial and radial water transport and internal water storage in tropical forest canopy trees.
    James SA; Meinzer FC; Goldstein G; Woodruff D; Jones T; Restom T; Mejia M; Clearwater M; Campanello P
    Oecologia; 2003 Jan; 134(1):37-45. PubMed ID: 12647177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements.
    Paudel I; Kanety T; Cohen S
    Tree Physiol; 2013 Sep; 33(9):986-1001. PubMed ID: 24128850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees.
    Bush SE; Hultine KR; Sperry JS; Ehleringer JR
    Tree Physiol; 2010 Dec; 30(12):1545-54. PubMed ID: 21112973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.
    Zeppel MJ; Lewis JD; Medlyn B; Barton CV; Duursma RA; Eamus D; Adams MA; Phillips N; Ellsworth DS; Forster MA; Tissue DT
    Tree Physiol; 2011 Sep; 31(9):932-44. PubMed ID: 21616926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.
    Marañón-Jiménez S; Van den Bulcke J; Piayda A; Van Acker J; Cuntz M; Rebmann C; Steppe K
    Tree Physiol; 2018 Feb; 38(2):287-301. PubMed ID: 28981912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica).
    Reinert S; Bögelein R; Thomas FM
    Tree Physiol; 2012 Mar; 32(3):294-302. PubMed ID: 22427372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single-probe heat pulse method for estimating sap velocity in trees.
    López-Bernal Á; Testi L; Villalobos FJ
    New Phytol; 2017 Oct; 216(1):321-329. PubMed ID: 28722117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.
    Wiedemann A; Marañón-Jiménez S; Rebmann C; Herbst M; Cuntz M
    Tree Physiol; 2016 Dec; 36(12):1471-1484. PubMed ID: 27587487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of thermophysical properties of human dentin: effect of open porosity.
    Figueiredo de Magalhães M; Neto Ferreira RA; Grossi PA; de Andrade RM
    J Dent; 2008 Aug; 36(8):588-94. PubMed ID: 18547708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.
    Braun S; Schindler C; Leuzinger S
    Environ Pollut; 2010 Sep; 158(9):2954-63. PubMed ID: 20580473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of thermal properties of composting bulking materials.
    Ahn HK; Sauer TJ; Richard TL; Glanville TD
    Bioresour Technol; 2009 Sep; 100(17):3974-81. PubMed ID: 19362828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.