These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22543679)

  • 1. Effects of morphology on the micro-compression response of carbon nanotube forests.
    Abadi PP; Hutchens SB; Greer JR; Cola BA; Graham S
    Nanoscale; 2012 Jun; 4(11):3373-80. PubMed ID: 22543679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation response of conformally coated carbon nanotube forest.
    Abadi PP; Maschmann MR; Baur JW; Graham S; Cola BA
    Nanotechnology; 2013 Nov; 24(47):475707. PubMed ID: 24192522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis.
    Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.
    Polsen ES; Stevens AG; Hart AJ
    ACS Appl Mater Interfaces; 2013 May; 5(9):3656-62. PubMed ID: 23438258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst.
    Hart AJ; Slocum AH
    J Phys Chem B; 2006 Apr; 110(16):8250-7. PubMed ID: 16623503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ SEM observation of column-like and foam-like CNT array nanoindentation.
    Maschmann MR; Zhang Q; Wheeler R; Du F; Dai L; Baur J
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):648-53. PubMed ID: 21366265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams.
    Zhang Y; Zou G; Doorn SK; Htoon H; Stan L; Hawley ME; Sheehan CJ; Zhu Y; Jia Q
    ACS Nano; 2009 Aug; 3(8):2157-62. PubMed ID: 19640000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.
    Huang JQ; Zhang Q; Xu GH; Qian WZ; Wei F
    Nanotechnology; 2008 Oct; 19(43):435602. PubMed ID: 21832698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts.
    Jiang Y; Wang P; Lin L
    Nanotechnology; 2011 Sep; 22(36):365704. PubMed ID: 21836331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gd-Enhanced Growth of Multi-Millimeter-Tall Forests of Single-Wall Carbon Nanotubes.
    Sugime H; Sato T; Nakagawa R; Cepek C; Noda S
    ACS Nano; 2019 Nov; 13(11):13208-13216. PubMed ID: 31674760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition.
    Yun Y; Shanov V; Tu Y; Subramaniam S; Schulz MJ
    J Phys Chem B; 2006 Nov; 110(47):23920-5. PubMed ID: 17125359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic deformation of carbon-nanotube nanorings.
    Zheng M; Ke C
    Small; 2010 Aug; 6(15):1647-55. PubMed ID: 20623528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition.
    Yang X; Yuan L; Peterson VK; Minett AI; Yin Y; Harris AT
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1417-22. PubMed ID: 22311688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films.
    Hsieh KC; Tsai TY; Wan D; Chen HL; Tai NH
    ACS Nano; 2010 Mar; 4(3):1327-36. PubMed ID: 20184384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst.
    Meshot ER; Plata DL; Tawfick S; Zhang Y; Verploegen EA; Hart AJ
    ACS Nano; 2009 Sep; 3(9):2477-86. PubMed ID: 19691287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coordinated buckling of carbon nanotube turfs under uniform compression.
    Zbib AA; Mesarovic SDj; Lilleodden ET; McClain D; Jiao J; Bahr DF
    Nanotechnology; 2008 Apr; 19(17):175704. PubMed ID: 21825683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope.
    Konishi H; Murata Y; Wongwiriyapan W; Kishida M; Tomita K; Motoyoshi K; Honda S; Katayama M; Yoshimoto S; Kubo K; Hobara R; Matsuda I; Hasegawa S; Yoshimura M; Lee JG; Mori H
    Rev Sci Instrum; 2007 Jan; 78(1):013703. PubMed ID: 17503924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.