BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22543856)

  • 1. An orthogonal comparison of the proteome of human embryonic stem cells with that of human induced pluripotent stem cells of different genetic background.
    Faradonbeh MZ; Gharechahi J; Mollamohammadi S; Pakzad M; Taei A; Rassouli H; Baharvand H; Salekdeh GH
    Mol Biosyst; 2012 Jun; 8(6):1833-40. PubMed ID: 22543856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomic analysis of human somatic cells, induced pluripotent stem cells, and embryonic stem cells.
    Kim SY; Kim MJ; Jung H; Kim WK; Kwon SO; Son MJ; Jang IS; Choi JS; Park SG; Park BC; Han YM; Lee SC; Cho YS; Bae KH
    Stem Cells Dev; 2012 May; 21(8):1272-86. PubMed ID: 21787230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome and transcriptome analyses of embryonic stem cells during embryoid body-based differentiation.
    Fathi A; Pakzad M; Taei A; Brink TC; Pirhaji L; Ruiz G; Sharif Tabe Bordbar M; Gourabi H; Adjaye J; Baharvand H; Salekdeh GH
    Proteomics; 2009 Nov; 9(21):4859-70. PubMed ID: 19862760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome analysis of the culture environment supporting undifferentiated mouse embryonic stem and germ cell growth.
    Buhr N; Carapito C; Schaeffer C; Hovasse A; Van Dorsselaer A; Viville S
    Electrophoresis; 2007 May; 28(10):1615-23. PubMed ID: 17436335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining pluripotent stem cells through quantitative proteomic analysis.
    Reiland S; Salekdeh GH; Krijgsveld J
    Expert Rev Proteomics; 2011 Feb; 8(1):29-42. PubMed ID: 21329426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proteomics of protein complexes and their implications for cell reprograming and pluripotency.
    Sudhir PR; Kumari MP; Hsu WT; Massiot J; Chen CH; Kuo HC; Chen CH
    J Proteome Res; 2013 Dec; 12(12):5878-90. PubMed ID: 24256468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inability of human induced pluripotent stem cell-hematopoietic derivatives to downregulate microRNAs in vivo reveals a block in xenograft hematopoietic regeneration.
    Risueño RM; Sachlos E; Lee JH; Lee JB; Hong SH; Szabo E; Bhatia M
    Stem Cells; 2012 Feb; 30(2):131-9. PubMed ID: 22131151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multipotent adult germline stem cells and embryonic stem cells: comparative proteomic approach.
    Dihazi H; Dihazi GH; Nolte J; Meyer S; Jahn O; Müller GA; Engel W
    J Proteome Res; 2009 Dec; 8(12):5497-510. PubMed ID: 19810753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of human embryonic stem cell and induced pluripotent stem cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation.
    Jozefczuk J; Prigione A; Chavez L; Adjaye J
    Stem Cells Dev; 2011 Jul; 20(7):1259-75. PubMed ID: 21162674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells.
    Benevento M; Munoz J
    Expert Rev Proteomics; 2012 Aug; 9(4):379-99. PubMed ID: 22967076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture and preparation of human embryonic stem cells for proteomics-based applications.
    King CC
    Methods Mol Biol; 2010; 584():151-77. PubMed ID: 19907977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.
    Prigione A; Fauler B; Lurz R; Lehrach H; Adjaye J
    Stem Cells; 2010 Apr; 28(4):721-33. PubMed ID: 20201066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic identification of RREB1, PDE6B, and CD209 up-regulated in primitive gut tube differentiated from human embryonic stem cells.
    Lee DH; Ko JJ; Ji YG; Chung HM; Hwang T
    Pancreas; 2012 Jan; 41(1):65-73. PubMed ID: 21792086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iTRAQ analysis of a cell culture model for malignant transformation, including comparison with 2D-PAGE and SILAC.
    Pütz SM; Boehm AM; Stiewe T; Sickmann A
    J Proteome Res; 2012 Apr; 11(4):2140-53. PubMed ID: 22313033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of differential proteomes of induced pluripotent stem cells by protein-based reprogramming of fibroblasts.
    Jin J; Kwon YW; Paek JS; Cho HJ; Yu J; Lee JY; Chu IS; Park IH; Park YB; Kim HS; Kim Y
    J Proteome Res; 2011 Mar; 10(3):977-89. PubMed ID: 21175196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of monkey embryonic stem cell during differentiation.
    Nasrabadi D; Rezaei Larijani M; Pirhaji L; Gourabi H; Shahverdi A; Baharvand H; Salekdeh GH
    J Proteome Res; 2009 Mar; 8(3):1527-39. PubMed ID: 19226164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics of human embryonic stem cells.
    Hughes CS; Nuhn AA; Postovit LM; Lajoie GA
    Proteomics; 2011 Feb; 11(4):675-90. PubMed ID: 21225999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells.
    Luzzani C; Solari C; Losino N; Ariel W; Romorini L; Bluguermann C; Sevlever G; Barañao L; Miriuka S; Guberman A
    Biochem Biophys Res Commun; 2011 Jul; 410(4):816-22. PubMed ID: 21703227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic signature of human embryonic stem cells.
    Baharvand H; Hajheidari M; Ashtiani SK; Salekdeh GH
    Proteomics; 2006 Jun; 6(12):3544-9. PubMed ID: 16758447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro generation of megakaryocytes and platelets from human embryonic stem cells and induced pluripotent stem cells.
    Takayama N; Eto K
    Methods Mol Biol; 2012; 788():205-17. PubMed ID: 22130710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.