BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 22543927)

  • 1. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression.
    Li S; Wen J; Jia X
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):577-89. PubMed ID: 21533914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corynebacterium glutamicum tailored for efficient isobutanol production.
    Blombach B; Riester T; Wieschalka S; Ziert C; Youn JW; Wendisch VF; Eikmanns BJ
    Appl Environ Microbiol; 2011 May; 77(10):3300-10. PubMed ID: 21441331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.
    Lee KM; Kim SK; Lee YG; Park KH; Seo JH
    Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the valine biosynthetic pathway to convert glucose into isobutanol.
    Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae.
    Milne N; van Maris AJ; Pronk JT; Daran JM
    Biotechnol Biofuels; 2015; 8():204. PubMed ID: 26628917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production.
    Xie H; Lindblad P
    Microb Cell Fact; 2022 Feb; 21(1):17. PubMed ID: 35105340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
    Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli.
    Atsumi S; Li Z; Liao JC
    Appl Environ Microbiol; 2009 Oct; 75(19):6306-11. PubMed ID: 19684168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial engineering for the production of isobutanol: current status and future directions.
    Lakshmi NM; Binod P; Sindhu R; Awasthi MK; Pandey A
    Bioengineered; 2021 Dec; 12(2):12308-12321. PubMed ID: 34927549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.
    Gu J; Zhou J; Zhang Z; Kim CH; Jiang B; Shi J; Hao J
    Metab Eng; 2017 Sep; 43(Pt A):71-84. PubMed ID: 28802880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis.
    Jia X; Li S; Xie S; Wen J
    Appl Biochem Biotechnol; 2012 Sep; 168(1):1-9. PubMed ID: 21537892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16.
    Lu J; Brigham CJ; Plassmeier JK; Sinskey AJ
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):761-74. PubMed ID: 25081555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis.
    Goupil-Feuillerat N; Cocaign-Bousquet M; Godon JJ; Ehrlich SD; Renault P
    J Bacteriol; 1997 Oct; 179(20):6285-93. PubMed ID: 9335274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae.
    Matsuda F; Kondo T; Ida K; Tezuka H; Ishii J; Kondo A
    Biosci Biotechnol Biochem; 2012; 76(11):2139-41. PubMed ID: 23132567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.