These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22544038)
21. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103 [TBL] [Abstract][Full Text] [Related]
22. The non-covalent functionalisation of carbon nanotubes studied by density functional and semi-empirical molecular orbital methods including dispersion corrections. McNamara JP; Sharma R; Vincent MA; Hillier IH; Morgado CA Phys Chem Chem Phys; 2008 Jan; 10(1):128-35. PubMed ID: 18075691 [TBL] [Abstract][Full Text] [Related]
24. Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Toh RJ; Ambrosi A; Pumera M Chemistry; 2012 Sep; 18(37):11593-6. PubMed ID: 22865345 [TBL] [Abstract][Full Text] [Related]
25. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
26. SERS study of the controllable release of nitric oxide from aromatic nitrosothiols on bimetallic, bifunctional nanoparticles supported on carbon nanotubes. Taladriz-Blanco P; Rodríguez-Lorenzo L; Sanles-Sobrido M; Hervés P; Correa-Duarte MA; Alvarez-Puebla RA; Liz-Marzán LM ACS Appl Mater Interfaces; 2009 Jan; 1(1):56-9. PubMed ID: 20355754 [TBL] [Abstract][Full Text] [Related]
27. Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution. Wang Y; Xu X; Tian Z; Zong Y; Cheng H; Lin C Chemistry; 2006 Mar; 12(9):2542-9. PubMed ID: 16389619 [TBL] [Abstract][Full Text] [Related]
28. Isoprene Polymerization on Iron Nanoparticles Confined in Carbon Nanotubes. Li X; Zhang L; Tan RP; Fazzini PF; Hungria T; Durand J; Lachaize S; Sun WH; Respaud M; Soulantica K; Serp P Chemistry; 2015 Nov; 21(48):17437-44. PubMed ID: 26471723 [TBL] [Abstract][Full Text] [Related]
29. Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol. Chen YS; Huang JH Biosens Bioelectron; 2010 Sep; 26(1):207-12. PubMed ID: 20637593 [TBL] [Abstract][Full Text] [Related]
30. Adsorbate-induced defect formation and annihilation on graphene and single-walled carbon nanotubes. Tsetseris L; Pantelides ST J Phys Chem B; 2009 Jan; 113(4):941-4. PubMed ID: 19132838 [TBL] [Abstract][Full Text] [Related]
31. Electronic structure of Zr-Ni-Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. Do DT; Mahanti SD; Pulikkoti JJ J Phys Condens Matter; 2014 Jul; 26(27):275501. PubMed ID: 24925669 [TBL] [Abstract][Full Text] [Related]
32. Dendrimer-assisted self-assembled monolayer of iron nanoparticles for vertical array carbon nanotube growth. Alvarez NT; Orbaek A; Barron AR; Tour JM; Hauge RH ACS Appl Mater Interfaces; 2010 Jan; 2(1):15-8. PubMed ID: 20356214 [TBL] [Abstract][Full Text] [Related]
33. Spectroscopic signatures of topological and diatom-vacancy defects in single-walled carbon nanotubes. Saidi WA; Norman P Phys Chem Chem Phys; 2014 Jan; 16(4):1479-86. PubMed ID: 24301905 [TBL] [Abstract][Full Text] [Related]
34. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118 [TBL] [Abstract][Full Text] [Related]
35. Computational study of Au_4 cluster on a carbon nanotube with and without defects using QM/MM methodology. Barraza-Jimenez D; Galvan DH; Posada-Amarillas A; Flores-Hidalgo MA; Glossman-Mitnik D; Jose-Yacaman M J Mol Model; 2012 Nov; 18(11):4885-91. PubMed ID: 22718327 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Zhang H; Cui H Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications. Rangari VK; Mohammad GM; Jeelani S; Hundley A; Vig K; Singh SR; Pillai S Nanotechnology; 2010 Mar; 21(9):095102. PubMed ID: 20139493 [TBL] [Abstract][Full Text] [Related]
38. Redox-active nickel in carbon nanotubes and its direct determination. Ambrosi A; Pumera M Chemistry; 2012 Mar; 18(11):3338-44. PubMed ID: 22307929 [TBL] [Abstract][Full Text] [Related]
39. Recognition ability of DNA for carbon nanotubes correlates with their binding affinity. Roxbury D; Tu X; Zheng M; Jagota A Langmuir; 2011 Jul; 27(13):8282-93. PubMed ID: 21650196 [TBL] [Abstract][Full Text] [Related]
40. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. Rodríguez-Manzo JA; Cretu O; Banhart F ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]