These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22544246)
1. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Sánchez-Andrea I; Knittel K; Amann R; Amils R; Sanz JL Appl Environ Microbiol; 2012 Jul; 78(13):4638-45. PubMed ID: 22544246 [TBL] [Abstract][Full Text] [Related]
2. Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Sánchez-Andrea I; Rodríguez N; Amils R; Sanz JL Appl Environ Microbiol; 2011 Sep; 77(17):6085-93. PubMed ID: 21724883 [TBL] [Abstract][Full Text] [Related]
3. Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Sánchez-Andrea I; Rojas-Ojeda P; Amils R; Sanz JL Extremophiles; 2012 Nov; 16(6):829-39. PubMed ID: 22956355 [TBL] [Abstract][Full Text] [Related]
4. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Sánchez-Andrea I; Stams AJ; Amils R; Sanz JL Environ Microbiol Rep; 2013 Oct; 5(5):672-8. PubMed ID: 24115617 [TBL] [Abstract][Full Text] [Related]
5. [Sulfate reduction and methanogenesis in the Shira and Shunet meromictic lakes (Khakass Republic, Russia)]. Kallistova AIu; Kevbrina MV; Pimenov NV; Rusanov II; Rogozin DIu; Wehrli B; Nozhevnikova AN Mikrobiologiia; 2006; 75(6):828-35. PubMed ID: 17205809 [TBL] [Abstract][Full Text] [Related]
6. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
7. Microbial ecology of an extreme acidic environment, the Tinto River. González-Toril E; Llobet-Brossa E; Casamayor EO; Amann R; Amils R Appl Environ Microbiol; 2003 Aug; 69(8):4853-65. PubMed ID: 12902280 [TBL] [Abstract][Full Text] [Related]
8. Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Abramov SM; Straub D; Tejada J; Grimm L; Schädler F; Bulaev A; Thorwarth H; Amils R; Kappler A; Kleindienst S Appl Environ Microbiol; 2022 Feb; 88(4):e0229021. PubMed ID: 34910570 [TBL] [Abstract][Full Text] [Related]
9. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain). Santofimia E; González-Toril E; López-Pamo E; Gomariz M; Amils R; Aguilera A PLoS One; 2013; 8(6):e66746. PubMed ID: 23840525 [TBL] [Abstract][Full Text] [Related]
10. Bacterial glycerol oxidation coupled to sulfate reduction at neutral and acidic pH. Santos SC; Liebensteiner MG; van Gelder AH; Dimitrov MR; Almeida PF; Quintella CM; Stams AJM; Sánchez-Andrea I J Gen Appl Microbiol; 2018 Mar; 64(1):1-8. PubMed ID: 29187682 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Kumar N; Omoregie EO; Rose J; Masion A; Lloyd JR; Diels L; Bastiaens L Water Res; 2014 Mar; 51():64-72. PubMed ID: 24388832 [TBL] [Abstract][Full Text] [Related]
12. Metabolically active microbial communities in marine sediment under high-CO(2) and low-pH extremes. Yanagawa K; Morono Y; de Beer D; Haeckel M; Sunamura M; Futagami T; Hoshino T; Terada T; Nakamura K; Urabe T; Rehder G; Boetius A; Inagaki F ISME J; 2013 Mar; 7(3):555-67. PubMed ID: 23096400 [TBL] [Abstract][Full Text] [Related]
13. An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. Ishii K; Mussmann M; MacGregor BJ; Amann R FEMS Microbiol Ecol; 2004 Nov; 50(3):203-13. PubMed ID: 19712361 [TBL] [Abstract][Full Text] [Related]
14. Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. López-Archilla AI; Gérard E; Moreira D; López-García P FEMS Microbiol Lett; 2004 Jun; 235(2):221-8. PubMed ID: 15183867 [TBL] [Abstract][Full Text] [Related]
15. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Wei G; Li M; Li F; Li H; Gao Z Appl Microbiol Biotechnol; 2016 Nov; 100(22):9683-9697. PubMed ID: 27557722 [TBL] [Abstract][Full Text] [Related]
16. Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Sanz JL; Rodríguez N; Díaz EE; Amils R Environ Microbiol; 2011 Aug; 13(8):2336-41. PubMed ID: 21605308 [TBL] [Abstract][Full Text] [Related]
17. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Kock D; Schippers A Appl Environ Microbiol; 2008 Aug; 74(16):5211-9. PubMed ID: 18586975 [TBL] [Abstract][Full Text] [Related]
18. Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt). González-Toril E; Santofimia E; López-Pamo E; García-Moyano A; Aguilera Á; Amils R Int Microbiol; 2014 Dec; 17(4):225-33. PubMed ID: 26421738 [TBL] [Abstract][Full Text] [Related]
19. Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Ji Y; Angel R; Klose M; Claus P; Marotta H; Pinho L; Enrich-Prast A; Conrad R Environ Microbiol; 2016 Dec; 18(12):5082-5100. PubMed ID: 27507000 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico. Torres-Alvarado MR; Calva-Benítez LG; Álvarez-Hernández S; Trejo-Aguilar G Rev Biol Trop; 2016 Dec; 64(4):1759-70. PubMed ID: 29465951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]