BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22544390)

  • 21. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels.
    Sim TS; Kwon K; Park JC; Lee JG; Jung HI
    Lab Chip; 2011 Jan; 11(1):93-9. PubMed ID: 20957273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis.
    Shah GJ; Ohta AT; Chiou EP; Wu MC; Kim CJ
    Lab Chip; 2009 Jun; 9(12):1732-9. PubMed ID: 19495457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detergent-based isolation of marginal bands of microtubules from nucleated erythrocytes.
    Sanchez I; Twersky LH; Cohen WD
    Eur J Cell Biol; 1990 Aug; 52(2):349-58. PubMed ID: 2127917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    Biomed Microdevices; 2010 Dec; 12(6):1019-26. PubMed ID: 20635204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Dec; 11(6):1297-307. PubMed ID: 19731039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective droplet coalescence using microfluidic systems.
    Mazutis L; Griffiths AD
    Lab Chip; 2012 Apr; 12(10):1800-6. PubMed ID: 22453914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.
    Liu X; Abbott NL
    Anal Chem; 2011 Apr; 83(8):3033-41. PubMed ID: 21446653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices.
    Wan Y; Tan J; Asghar W; Kim YT; Liu Y; Iqbal SM
    J Phys Chem B; 2011 Dec; 115(47):13891-6. PubMed ID: 22029250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis.
    Liu J; Yang S; Lee CS; DeVoe DL
    Electrophoresis; 2008 Jun; 29(11):2241-50. PubMed ID: 18449857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture.
    Korin N; Bransky A; Dinnar U; Levenberg S
    Biomed Microdevices; 2009 Feb; 11(1):87-94. PubMed ID: 18802754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crossing microfluidic streamlines to lyse, label and wash cells.
    Morton KJ; Loutherback K; Inglis DW; Tsui OK; Sturm JC; Chou SY; Austin RH
    Lab Chip; 2008 Sep; 8(9):1448-53. PubMed ID: 18818798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of hemolysis by surfactants: effect of solution composition.
    Shalel S; Streichman S; Marmur A
    J Colloid Interface Sci; 2002 Aug; 252(1):66-76. PubMed ID: 16290763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.