These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22544649)

  • 21. Defining the substrate specificity of mouse cathepsin P.
    Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK
    Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity.
    Kiss AL; Hornung B; Rádi K; Gengeliczki Z; Sztáray B; Juhász T; Szeltner Z; Harmat V; Polgár L
    J Mol Biol; 2007 Apr; 368(2):509-20. PubMed ID: 17350041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites.
    Schilling O; Overall CM
    Nat Biotechnol; 2008 Jun; 26(6):685-94. PubMed ID: 18500335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption.
    Beyer M; Felgenhauer T; Ralf Bischoff F; Breitling F; Stadler V
    Biomaterials; 2006 Jun; 27(18):3505-14. PubMed ID: 16499964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide array-based characterization and design of ZnO-high affinity peptides.
    Okochi M; Sugita T; Furusawa S; Umetsu M; Adschiri T; Honda H
    Biotechnol Bioeng; 2010 Aug; 106(6):845-51. PubMed ID: 20506179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescein-based amino acids for solid phase synthesis of fluorogenic protease substrates.
    Burchak ON; Mugherli L; Chatelain F; Balakirev MY
    Bioorg Med Chem; 2006 Apr; 14(8):2559-68. PubMed ID: 16380261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Serine protease specificity for peptide chromogenic substrates.
    Mattler LE; Bang NU
    Thromb Haemost; 1977 Dec; 38(4):776-92. PubMed ID: 146272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From 10,000 to 1: Selective synthesis and enzymatic evaluation of fluorescence resonance energy transfer peptides as specific substrates for chymopapain.
    Diaz-Mochon JJ; Planonth S; Bradley M
    Anal Biochem; 2009 Jan; 384(1):101-5. PubMed ID: 18814838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity based fingerprinting of proteases using FRET peptides.
    Sun H; Panicker RC; Yao SQ
    Biopolymers; 2007; 88(2):141-9. PubMed ID: 17206627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SUMO assay with peptide arrays on solid support: insights into SUMO target sites.
    Schwamborn K; Knipscheer P; van Dijk E; van Dijk WJ; Sixma TK; Meloen RH; Langedijk JP
    J Biochem; 2008 Jul; 144(1):39-49. PubMed ID: 18344540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using peptide arrays to define nuclear carrier binding sites on nucleoporins.
    Cushman I; Palzkill T; Moore MS
    Methods; 2006 Aug; 39(4):329-41. PubMed ID: 16908185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural determinants of HscA peptide-binding specificity.
    Tapley TL; Cupp-Vickery JR; Vickery LE
    Biochemistry; 2006 Jul; 45(26):8058-66. PubMed ID: 16800630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method.
    Winkler DF; Hilpert K; Brandt O; Hancock RE
    Methods Mol Biol; 2009; 570():157-74. PubMed ID: 19649591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subsite cooperativity in protease specificity.
    Ng NM; Pike RN; Boyd SE
    Biol Chem; 2009; 390(5-6):401-7. PubMed ID: 19361286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defining the extended substrate specificity of kallikrein 1-related peptidases.
    Borgoño CA; Gavigan JA; Alves J; Bowles B; Harris JL; Sotiropoulou G; Diamandis EP
    Biol Chem; 2007 Nov; 388(11):1215-25. PubMed ID: 17976015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Na+ binding channel of human coagulation proteases: novel insights on the structure and allosteric modulation revealed by molecular surface analysis.
    Silva FP; Antunes OA; de Alencastro RB; De Simone SG
    Biophys Chem; 2006 Feb; 119(3):282-94. PubMed ID: 16288954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide-based fluorescence resonance energy transfer protease substrates for the detection and diagnosis of Bacillus species.
    Kaman WE; Hulst AG; van Alphen PT; Roffel S; van der Schans MJ; Merkel T; van Belkum A; Bikker FJ
    Anal Chem; 2011 Apr; 83(7):2511-7. PubMed ID: 21370823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.