These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22544807)

  • 1. A leavening strategy to prepare reduced graphene oxide foams.
    Niu Z; Chen J; Hng HH; Ma J; Chen X
    Adv Mater; 2012 Aug; 24(30):4144-50. PubMed ID: 22544807
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors.
    Guo Y; Wu B; Liu H; Ma Y; Yang Y; Zheng J; Yu G; Liu Y
    Adv Mater; 2011 Oct; 23(40):4626-30. PubMed ID: 21910143
    [No Abstract]   [Full Text] [Related]  

  • 3. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.
    He Y; Liu Y; Wu T; Ma J; Wang X; Gong Q; Kong W; Xing F; Liu Y; Gao J
    J Hazard Mater; 2013 Sep; 260():796-805. PubMed ID: 23856309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of adenine-modified reduced graphene oxide nanosheets.
    Cao H; Wu X; Yin G; Warner JH
    Inorg Chem; 2012 Mar; 51(5):2954-60. PubMed ID: 22356685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors.
    Sun G; Liu J; Zhang X; Wang X; Li H; Yu Y; Huang W; Zhang H; Chen P
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12576-80. PubMed ID: 25130600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid.
    Chen D; Li L; Guo L
    Nanotechnology; 2011 Aug; 22(32):325601. PubMed ID: 21757797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide.
    Liu J; Fu S; Yuan B; Li Y; Deng Z
    J Am Chem Soc; 2010 Jun; 132(21):7279-81. PubMed ID: 20462190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons.
    Chitara B; Panchakarla LS; Krupanidhi SB; Rao CN
    Adv Mater; 2011 Dec; 23(45):5419-24. PubMed ID: 21786342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous and fast growth of large-area graphene nanofilms facilitated by oil/water interfaces.
    Gan S; Zhong L; Wu T; Han D; Zhang J; Ulstrup J; Chi Q; Niu L
    Adv Mater; 2012 Aug; 24(29):3958-64. PubMed ID: 22689291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of reduced graphene oxide by UV irradiation.
    Wu T; Liu S; Li H; Wang L; Sun X
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10078-81. PubMed ID: 22413347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemical route to graphene for device applications.
    Gilje S; Han S; Wang M; Wang KL; Kaner RB
    Nano Lett; 2007 Nov; 7(11):3394-8. PubMed ID: 17944523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.
    Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW
    J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications.
    Mao S; Yu K; Cui S; Bo Z; Lu G; Chen J
    Nanoscale; 2011 Jul; 3(7):2849-53. PubMed ID: 21674112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent nanoarchitectures in metal nanoparticle-graphene nanocomposite modified electrodes for electroanalysis.
    Oyama M; Chen X; Chen X
    Anal Sci; 2014; 30(5):529-38. PubMed ID: 24813950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices.
    Liu J; Yin Z; Cao X; Zhao F; Wang L; Huang W; Zhang H
    Adv Mater; 2013 Jan; 25(2):233-8. PubMed ID: 23109141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.
    Williams G; Seger B; Kamat PV
    ACS Nano; 2008 Jul; 2(7):1487-91. PubMed ID: 19206319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites.
    Li X; Qi W; Mei D; Sushko ML; Aksay I; Liu J
    Adv Mater; 2012 Sep; 24(37):5136-41. PubMed ID: 22811002
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduced graphene oxide molecular sensors.
    Robinson JT; Perkins FK; Snow ES; Wei Z; Sheehan PE
    Nano Lett; 2008 Oct; 8(10):3137-40. PubMed ID: 18763832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-robust graphene oxide-silk fibroin nanocomposite membranes.
    Hu K; Gupta MK; Kulkarni DD; Tsukruk VV
    Adv Mater; 2013 Apr; 25(16):2301-7. PubMed ID: 23450461
    [No Abstract]   [Full Text] [Related]  

  • 20. Determination of the local chemical structure of graphene oxide and reduced graphene oxide.
    Erickson K; Erni R; Lee Z; Alem N; Gannett W; Zettl A
    Adv Mater; 2010 Oct; 22(40):4467-72. PubMed ID: 20717985
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.