These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22545411)

  • 1. Competition of ester, amide, ether, carbonate, alcohol and epoxide ligands in the dirhodium experiment (chiral discrimination by NMR spectroscopy).
    Mattiza JT; Meyer V; Ozüduru G; Heine T; Fohrer J; Duddeck H
    Nat Prod Commun; 2012 Mar; 7(3):359-62. PubMed ID: 22545411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing dirhodium(II) tetrakiscarboxylates as chiral NMR auxiliaries.
    Mattiza JT; Fohrer JG; Duddeck H; Gardiner MG; Ghanem A
    Org Biomol Chem; 2011 Oct; 9(19):6542-50. PubMed ID: 21808807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral recognition of Schiff bases by 15N NMR spectroscopy in the presence of a dirhodium complex. Deuterium isotope effect on 15N chemical shift of the optically active Schiff bases and their dirhodium tetracarboxylate adducts.
    Rozwadowski Z; Nowak-Wydra B
    Magn Reson Chem; 2008 Oct; 46(10):974-8. PubMed ID: 18666208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of diverging mechanisms in the binding of ether, thioether, and sulfone ligands to a dirhodium tetracarboxylate.
    Mattiza JT; Meyer VJ; Duddeck H
    Magn Reson Chem; 2010 Mar; 48(3):192-7. PubMed ID: 20066661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adamantanes as spherical nanosondes in adducts with a chiral dirhodium complex-discriminating enantiomers and probing spatial proximities.
    Duddeck H; Tóth G; Simon A; Gómez ED; Mattiza JT
    Magn Reson Chem; 2011 Jun; 49(6):328-42. PubMed ID: 21452345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral recognition of the Schiff bases by NMR spectroscopy in the presence of a chiral dirhodium complex. Deuterium isotope effect on 13C chemical shift of the optically active Schiff bases and their dirhodium adducts.
    Rozwadowski Z
    Magn Reson Chem; 2007 Jul; 45(7):605-10. PubMed ID: 17534869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral recognition of ethers by NMR spectroscopy.
    Duddeck H; Gómez ED
    Chirality; 2009 Jan; 21(1):51-68. PubMed ID: 18655008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of alpha-heteroarylpropanoic acid via asymmetric hydroformylation catalyzed by Rh(I)-(R,S)-BINAPHOS and the subsequent oxidation.
    Tanaka R; Nakano K; Nozaki K
    J Org Chem; 2007 Nov; 72(23):8671-6. PubMed ID: 17927247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel binding interactions of the DNA fragment d(pGpG) cross-linked by the antitumor active compound tetrakis(mu-carboxylato)dirhodium(II,II).
    Chifotides HT; Koshlap KM; Pérez LM; Dunbar KR
    J Am Chem Soc; 2003 Sep; 125(35):10714-24. PubMed ID: 12940757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First direct discrimination of chiral phosphine selenide (P=Se) derivatives by multinuclear magnetic resonance spectroscopy in the presence of a chiral dirhodium complex.
    Malik S; Duddeck H; Omelanczuk J; Choudhary MI
    Chirality; 2002 May; 14(5):407-11. PubMed ID: 11984756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stitching phospholanes together piece by piece: new modular di- and tridentate stereodirecting ligands.
    Lloret Fillol J; Kruckenberg A; Scherl P; Wadepohl H; Gade LH
    Chemistry; 2011 Dec; 17(50):14047-62. PubMed ID: 22068933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic enantioselective organozinc addition toward optically active tertiary alcohol synthesis.
    Hatano M; Ishihara K
    Chem Rec; 2008; 8(3):143-55. PubMed ID: 18563831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and application.
    Qin C; Boyarskikh V; Hansen JH; Hardcastle KI; Musaev DG; Davies HM
    J Am Chem Soc; 2011 Nov; 133(47):19198-204. PubMed ID: 22047062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of an asymmetric addition with a 2:1 mixed lithium amide/n-butyllithium aggregate.
    Liu J; Li D; Sun C; Williard PG
    J Org Chem; 2008 Jun; 73(11):4045-52. PubMed ID: 18459811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First direct discrimination of chiral phosphorus thionate (P=S) derivatives by multinuclear magnetic resonance spectroscopy in the presence of a chiral dirhodium complex.
    Rockitt S; Duddeck H; Omelanczuk J
    Chirality; 2001 May; 13(4):214-23. PubMed ID: 11284027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dirhodium tetracarboxylate derived from adamantylglycine as a chiral catalyst for carbenoid reactions.
    Reddy RP; Lee GH; Davies HM
    Org Lett; 2006 Aug; 8(16):3437-40. PubMed ID: 16869629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C-h aminations.
    Reddy RP; Davies HM
    Org Lett; 2006 Oct; 8(22):5013-6. PubMed ID: 17048831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the stereo-electronic properties of cationic rhodium complexes bearing chiral diphosphine ligands by 103Rh NMR.
    Fabrello A; Dinoi C; Perrin L; Kalck P; Maron L; Urrutigoity M; Dechy-Cabaret O
    Magn Reson Chem; 2010 Nov; 48(11):848-56. PubMed ID: 20845501
    [