These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22545624)

  • 1. Atomistic insights into the conversion reaction in iron fluoride: a dynamically adaptive force field approach.
    Ma Y; Garofalini SH
    J Am Chem Soc; 2012 May; 134(19):8205-11. PubMed ID: 22545624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study.
    Yamakawa N; Jiang M; Key B; Grey CP
    J Am Chem Soc; 2009 Aug; 131(30):10525-36. PubMed ID: 19585988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between the ionic and electronic transport and its effects on the reaction pattern during the electrochemical conversion in an FeF2 nanoparticle.
    Ma Y; Garofalini SH
    Phys Chem Chem Phys; 2014 Jun; 16(23):11690-7. PubMed ID: 24810179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca.
    He Y; Gu M; Xiao H; Luo L; Shao Y; Gao F; Du Y; Mao SX; Wang C
    Angew Chem Int Ed Engl; 2016 May; 55(21):6244-7. PubMed ID: 27071488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
    Bazant MZ
    Acc Chem Res; 2013 May; 46(5):1144-60. PubMed ID: 23520980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode.
    Zhao Y; Wei K; Wu H; Ma S; Li J; Cui Y; Dong Z; Cui Y; Li C
    ACS Nano; 2019 Feb; 13(2):2490-2500. PubMed ID: 30640443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.
    Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C
    ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries.
    Ramos-Sanchez G; Callejas-Tovar A; Scanlon LG; Balbuena PB
    Phys Chem Chem Phys; 2014 Jan; 16(2):743-52. PubMed ID: 24270502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3.
    Luo L; Zhao B; Xiang B; Wang CM
    ACS Nano; 2016 Jan; 10(1):1249-55. PubMed ID: 26593677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Li diffusion in Li-intercalation compounds.
    Van der Ven A; Bhattacharya J; Belak AA
    Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂.
    Panchmatia PM; Armstrong AR; Bruce PG; Islam MS
    Phys Chem Chem Phys; 2014 Oct; 16(39):21114-8. PubMed ID: 25008057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.
    Schroeder M; Eames C; Tompsett DA; Lieser G; Islam MS
    Phys Chem Chem Phys; 2013 Dec; 15(47):20473-9. PubMed ID: 24173531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery.
    Luo L; Wu J; Xu J; Dravid VP
    ACS Nano; 2014 Nov; 8(11):11560-6. PubMed ID: 25337887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fading Mechanisms and Voltage Hysteresis in FeF
    Huang Q; Pollard TP; Ren X; Kim D; Magasinski A; Borodin O; Yushin G
    Small; 2019 Feb; 15(6):e1804670. PubMed ID: 30645034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific transition metal occupation in multicomponent pyrophosphate for improved electrochemical and thermal properties in lithium battery cathodes: a combined experimental and theoretical study.
    Shakoor RA; Kim H; Cho W; Lim SY; Song H; Lee JW; Kang JK; Kim YT; Jung Y; Choi JW
    J Am Chem Soc; 2012 Jul; 134(28):11740-8. PubMed ID: 22720717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage.
    Raju M; Ganesh P; Kent PR; van Duin AC
    J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.