BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22545728)

  • 1. The absence of heat shock protein HSP101 affects the proteome of mature and germinating maize embryos.
    Lázaro-Mixteco PE; Nieto-Sotelo J; Swatek KN; Houston NL; Mendoza-Hernández G; Thelen JJ; Dinkova TD
    J Proteome Res; 2012 Jun; 11(6):3246-58. PubMed ID: 22545728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental and thermal regulation of the maize heat shock protein, HSP101.
    Young TE; Ling J; Geisler-Lee CJ; Tanguay RL; Caldwell C; Gallie DR
    Plant Physiol; 2001 Nov; 127(3):777-91. PubMed ID: 11706162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth.
    Nieto-Sotelo J; Martínez LM; Ponce G; Cassab GI; Alagón A; Meeley RB; Ribaut JM; Yang R
    Plant Cell; 2002 Jul; 14(7):1621-33. PubMed ID: 12119379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cap-independent translation of maize Hsp101.
    Dinkova TD; Zepeda H; Martínez-Salas E; Martínez LM; Nieto-Sotelo J; de Jiménez ES
    Plant J; 2005 Mar; 41(5):722-31. PubMed ID: 15703059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics of desiccation tolerance during development and germination of maize embryos.
    Huang H; Møller IM; Song SQ
    J Proteomics; 2012 Feb; 75(4):1247-62. PubMed ID: 22108046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of HSP101 in the stimulation of nodal root development from the coleoptilar node by light and temperature in maize (Zea mays L.) seedlings.
    López-Frías G; Martínez LM; Ponce G; Cassab GI; Nieto-Sotelo J
    J Exp Bot; 2011 Aug; 62(13):4661-73. PubMed ID: 21652530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress.
    Hong SW; Vierling E
    Plant J; 2001 Jul; 27(1):25-35. PubMed ID: 11489180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue.
    Nieto-Sotelo J; Kannan KB; Martínez LM; Segal C
    Gene; 1999 Apr; 230(2):187-95. PubMed ID: 10216257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-resistant protein expression during germination of maize seeds under water stress.
    Abreu VM; Silva Neta IC; Von Pinho EV; Naves GM; Guimarães RM; Santos HO; Von Pinho RG
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27525950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.
    Marcon C; Schützenmeister A; Schütz W; Madlung J; Piepho HP; Hochholdinger F
    J Proteome Res; 2010 Dec; 9(12):6511-22. PubMed ID: 20973536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural analysis of maize hsp101 IRES.
    Jiménez-González AS; Fernández N; Martínez-Salas E; Sánchez de Jiménez E
    PLoS One; 2014; 9(9):e107459. PubMed ID: 25222534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation.
    Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F
    Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs.
    Jiménez-López S; Mancera-Martínez E; Donayre-Torres A; Rangel C; Uribe L; March S; Jiménez-Sánchez G; Sánchez de Jiménez E
    Plant Cell Physiol; 2011 Oct; 52(10):1719-33. PubMed ID: 21880676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Maize LEA proteins: from proteomics to functional approaches.
    Amara I; Odena A; Oliveira E; Moreno A; Masmoudi K; Pagès M; Goday A
    Plant Cell Physiol; 2012 Feb; 53(2):312-29. PubMed ID: 22199372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome analysis of maize seeds: the effect of artificial ageing.
    Xin X; Lin XH; Zhou YC; Chen XL; Liu X; Lu XX
    Physiol Plant; 2011 Oct; 143(2):126-38. PubMed ID: 21707636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ribosome biogenesis in maize embryonic axes during germination.
    Villa-Hernández JM; Dinkova TD; Aguilar-Caballero R; Rivera-Cabrera F; Sánchez de Jiménez E; Pérez-Flores LJ
    Biochimie; 2013 Oct; 95(10):1871-9. PubMed ID: 23806421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis.
    Fu S; Meeley R; Scanlon MJ
    Plant Cell; 2002 Dec; 14(12):3119-32. PubMed ID: 12468731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.