BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 22545791)

  • 1. Recent advances in engineering the central carbon metabolism of industrially important bacteria.
    Papagianni M
    Microb Cell Fact; 2012 Apr; 11():50. PubMed ID: 22545791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the optimization of central carbon metabolism in metabolic engineering.
    Wu Z; Liang X; Li M; Ma M; Zheng Q; Li D; An T; Wang G
    Microb Cell Fact; 2023 Apr; 22(1):76. PubMed ID: 37085866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations.
    Hugenholtz J; Kleerebezem M
    Curr Opin Biotechnol; 1999 Oct; 10(5):492-7. PubMed ID: 10508636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathway engineering in lactic acid bacteria.
    Kleerebezem M; Hugenholtz J
    Curr Opin Biotechnol; 2003 Apr; 14(2):232-7. PubMed ID: 12732327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum.
    Teramoto H; Inui M; Yukawa H
    J Biotechnol; 2011 Jul; 154(2-3):114-25. PubMed ID: 21277916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis.
    Shinkawa S; Okano K; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1537-44. PubMed ID: 21637940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal
    Toya Y; Ohashi S; Shimizu H
    J Biosci Bioeng; 2018 Mar; 125(3):301-305. PubMed ID: 29107627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating microarrays using a semiparametric approach: application to the central carbon metabolism of Escherichia coli BL21 and JM109.
    Phue JN; Kedem B; Jaluria P; Shiloach J
    Genomics; 2007 Feb; 89(2):300-5. PubMed ID: 17125967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis.
    Usui Y; Hirasawa T; Furusawa C; Shirai T; Yamamoto N; Mori H; Shimizu H
    Microb Cell Fact; 2012 Jun; 11():87. PubMed ID: 22721472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle.
    Alteri CJ; Smith SN; Mobley HL
    PLoS Pathog; 2009 May; 5(5):e1000448. PubMed ID: 19478872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 13. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering primary metabolic pathways of industrial micro-organisms.
    Kern A; Tilley E; Hunter IS; Legisa M; Glieder A
    J Biotechnol; 2007 Mar; 129(1):6-29. PubMed ID: 17196287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.
    Sauer U; Eikmanns BJ
    FEMS Microbiol Rev; 2005 Sep; 29(4):765-94. PubMed ID: 16102602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetate metabolism and its regulation in Corynebacterium glutamicum.
    Gerstmeir R; Wendisch VF; Schnicke S; Ruan H; Farwick M; Reinscheid D; Eikmanns BJ
    J Biotechnol; 2003 Sep; 104(1-3):99-122. PubMed ID: 12948633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of the biochemical valves in the central metabolism of Escherichia coli.
    Liao JC; Chao YP; Patnaik R
    Ann N Y Acad Sci; 1994 Nov; 745():21-34. PubMed ID: 7832509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of metabolic flow of xylose in Lactococcus lactis.
    Ohara H; Owaki M; Sonomoto K
    J Biosci Bioeng; 2007 Jan; 103(1):92-4. PubMed ID: 17298906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CceR and AkgR regulate central carbon and energy metabolism in alphaproteobacteria.
    Imam S; Noguera DR; Donohue TJ
    mBio; 2015 Feb; 6(1):. PubMed ID: 25650399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extended dynamic model of Lactococcus lactis metabolism for mannitol and 2,3-butanediol production.
    Costa RS; Hartmann A; Gaspar P; Neves AR; Vinga S
    Mol Biosyst; 2014 Mar; 10(3):628-39. PubMed ID: 24413179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.