These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22546368)

  • 1. Biomass for energy in the European Union - a review of bioenergy resource assessments.
    Bentsen NS; Felby C
    Biotechnol Biofuels; 2012 Apr; 5(1):25. PubMed ID: 22546368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass residues as twenty-first century bioenergy feedstock-a comparison of eight integrated assessment models.
    Hanssen SV; Daioglou V; Steinmann ZJN; Frank S; Popp A; Brunelle T; Lauri P; Hasegawa T; Huijbregts MAJ; Van Vuuren DP
    Clim Change; 2020; 163(3):1569-1586. PubMed ID: 33364667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EU28 region's water security and the effect of bioenergy industry sustainability.
    Alsaleh M; Abdul-Rahim AS; Abdulwakil MM
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9346-9361. PubMed ID: 33141381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use.
    Scarlat N; Martinov M; Dallemand JF
    Waste Manag; 2010 Oct; 30(10):1889-97. PubMed ID: 20494567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioenergy to save the world. Producing novel energy plants for growth on abandoned land.
    Schröder P; Herzig R; Bojinov B; Ruttens A; Nehnevajova E; Stamatiadis S; Memon A; Vassilev A; Caviezel M; Vangronsveld J
    Environ Sci Pollut Res Int; 2008 May; 15(3):196-204. PubMed ID: 18504837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioenergy production in Pakistan: Potential, progress, and prospect.
    Khan S; Nisar A; Wu B; Zhu QL; Wang YW; Hu GQ; He MX
    Sci Total Environ; 2022 Mar; 814():152872. PubMed ID: 34990677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.
    Erb KH; Haberl H; Plutzar C
    Energy Policy; 2012 Aug; 47(4):260-269. PubMed ID: 23576836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appraising the availability of biomass residues in India and their bioenergy potential.
    Deep Singh A; Gajera B; Sarma AK
    Waste Manag; 2022 Oct; 152():38-47. PubMed ID: 35973326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research.
    Ribeiro GF; Junior AB
    Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields.
    Haberl H; Erb KH; Krausmann F; Bondeau A; Lauk C; Müller C; Plutzar C; Steinberger JK
    Biomass Bioenergy; 2011 Dec; 35(12):4753-4769. PubMed ID: 22211004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cumulative global forest carbon implications of regional bioenergy expansion policies.
    Kim SJ; Baker JS; Sohngen BL; Shell M
    Resour Energy Econ; 2018 Aug; 53():198-219. PubMed ID: 30245551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The future of bioenergy.
    Reid WV; Ali MK; Field CB
    Glob Chang Biol; 2020 Jan; 26(1):274-286. PubMed ID: 31642554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials.
    Kang Y; Yang Q; Bartocci P; Wei H; Liu SS; Wu Z; Zhou H; Yang H; Fantozzi F; Chen H
    Renew Sustain Energy Rev; 2020 Jul; 127():109842. PubMed ID: 34234613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling.
    Meena M; Shubham S; Paritosh K; Pareek N; Vivekanand V
    Bioresour Technol; 2021 Nov; 340():125642. PubMed ID: 34315128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges.
    Rashidi NA; Chai YH; Yusup S
    Bioenergy Res; 2022; 15(3):1371-1386. PubMed ID: 35079317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.