BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22546481)

  • 1. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D; Hsieh CW; Felby C; Jørgensen H
    Biotechnol Biofuels; 2012 Apr; 5(1):26. PubMed ID: 22546481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.
    Rodrigues AC; Haven MØ; Lindedam J; Felby C; Gama M
    Enzyme Microb Technol; 2015 Nov; 79-80():70-7. PubMed ID: 26320717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin.
    Haven MO; Jørgensen H
    Biotechnol Biofuels; 2013 Nov; 6(1):165. PubMed ID: 24274678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?
    Cannella D; Jørgensen H
    Biotechnol Bioeng; 2014 Jan; 111(1):59-68. PubMed ID: 24022674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented hydrolysis of acid pretreated sugarcane bagasse by PEG 6000 addition: a case study of Cellic CTec2 with recycling and reuse.
    Baral P; Jain L; Kurmi AK; Kumar V; Agrawal D
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):473-482. PubMed ID: 31705315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: improved performance through substrate modifications.
    Weiss ND; Felby C; Thygesen LG
    Biotechnol Biofuels; 2019; 12():3. PubMed ID: 30622645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellobiohydrolase B of
    Woon JS; Mackeen MM; Illias RM; Mahadi NM; Broughton WJ; Murad AMA; Abu Bakar FD
    PeerJ; 2017; 5():e3909. PubMed ID: 29038760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass.
    Rocha-Martín J; Martinez-Bernal C; Pérez-Cobas Y; Reyes-Sosa FM; García BD
    Bioresour Technol; 2017 Nov; 244(Pt 1):48-56. PubMed ID: 28777990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house.
    Kovacs K; Macrelli S; Szakacs G; Zacchi G
    Biotechnol Biofuels; 2009 Jul; 2():14. PubMed ID: 19580644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency of cellulase activity measurements for enzyme evaluation.
    Pryor SW; Nahar N
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1737-50. PubMed ID: 20407843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis.
    Jung W; Sharma-Shivappa R; Park S; Kolar P
    3 Biotech; 2020 Jan; 10(1):1. PubMed ID: 31815083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.
    Peng X; Qiao W; Mi S; Jia X; Su H; Han Y
    Biotechnol Biofuels; 2015; 8():131. PubMed ID: 26322125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass.
    Lee S; Akeprathumchai S; Bundidamorn D; Salaipeth L; Poomputsa K; Ratanakhanokchai K; Chang KL; Phitsuwan P
    Bioengineered; 2021 Dec; 12(1):5110-5124. PubMed ID: 34369275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.
    Rosgaard L; Pedersen S; Cherry JR; Harris P; Meyer AS
    Biotechnol Prog; 2006; 22(2):493-8. PubMed ID: 16599567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of thermostable β-glucosidase TN0602 and cellulase on cellulose hydrolysis.
    Zhang Z; Wang M; Gao R; Yu X; Chen G
    3 Biotech; 2017 May; 7(1):54. PubMed ID: 28444598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis.
    Tu M; Zhang X; Kurabi A; Gilkes N; Mabee W; Saddler J
    Biotechnol Lett; 2006 Feb; 28(3):151-6. PubMed ID: 16489491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
    Hu J; Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Oct; 4():36. PubMed ID: 21974832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.