BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22546481)

  • 21. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae.
    Li X; Chomvong K; Yu VY; Liang JM; Lin Y; Cate JHD
    Biotechnol Biofuels; 2015; 8():120. PubMed ID: 26279678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.
    Rosgaard L; Pedersen S; Meyer AS
    Appl Biochem Biotechnol; 2007 Dec; 143(3):284-96. PubMed ID: 18057455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.
    Sun FF; Hong J; Hu J; Saddler JN; Fang X; Zhang Z; Shen S
    Enzyme Microb Technol; 2015 Nov; 79-80():42-8. PubMed ID: 26320713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce. Hydrolytic potential of cellulases on different substrates.
    Szengyel Z; Zacchi G; Varga A; Réczey K
    Appl Biochem Biotechnol; 2000; 84-86():679-91. PubMed ID: 10849827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes.
    Zhang M; Su R; Qi W; He Z
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1407-14. PubMed ID: 19288067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Customized optimization of cellulase mixtures for differently pretreated rice straw.
    Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH
    Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw.
    Rosgaard L; Andric P; Dam-Johansen K; Pedersen S; Meyer AS
    Appl Biochem Biotechnol; 2007 Oct; 143(1):27-40. PubMed ID: 18025594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw.
    Dashtban M; Qin W
    Microb Cell Fact; 2012 May; 11():63. PubMed ID: 22607229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.
    Várnai A; Viikari L; Marjamaa K; Siika-aho M
    Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effectiveness of cross-linked enzyme aggregates of cellulolytic enzymes in hydrolyzing wheat straw.
    Shuddhodana ; Gupta MN; Bisaria VS
    J Biosci Bioeng; 2018 Oct; 126(4):445-450. PubMed ID: 29759794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of cellulase inhibitors to produce cellobiose.
    Kim M; Day DF
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1379-90. PubMed ID: 20703956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A.
    Liu S; Zhang M; Hong D; Fang Z; Xiao Y; Fang W; Zhang X
    Enzyme Microb Technol; 2023 Sep; 169():110289. PubMed ID: 37473697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermostable enzymes in lignocellulose hydrolysis.
    Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M
    Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods.
    Du J; Liang J; Gao X; Liu G; Qu Y
    Bioresour Technol; 2020 Jan; 295():122272. PubMed ID: 31669875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of enzyme complexes for lignocellulose hydrolysis.
    Berlin A; Maximenko V; Gilkes N; Saddler J
    Biotechnol Bioeng; 2007 Jun; 97(2):287-96. PubMed ID: 17058283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):308-24. PubMed ID: 20080173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration.
    Cao LC; Wang ZJ; Ren GH; Kong W; Li L; Xie W; Liu YH
    Biotechnol Biofuels; 2015; 8():202. PubMed ID: 26628916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New two-stage pretreatment for the fractionation of lignocellulosic components using hydrothermal pretreatment followed by imidazole delignification: Focus on the polysaccharide valorization.
    Toscan A; Fontana RC; Andreaus J; Camassola M; Lukasik RM; Dillon AJP
    Bioresour Technol; 2019 Aug; 285():121346. PubMed ID: 31004946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.