BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22546481)

  • 41. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw.
    Oliva-Taravilla A; Moreno AD; Demuez M; Ibarra D; Tomás-Pejó E; González-Fernández C; Ballesteros M
    Bioresour Technol; 2015 Jan; 175():209-15. PubMed ID: 25459824
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.
    Nam YW; Nihira T; Arakawa T; Saito Y; Kitaoka M; Nakai H; Fushinobu S
    J Biol Chem; 2015 Jul; 290(30):18281-92. PubMed ID: 26041776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment.
    Kuglarz M; Alvarado-Morales M; Dąbkowska K; Angelidaki I
    Bioresour Technol; 2018 Oct; 265():191-199. PubMed ID: 29902651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics.
    Basotra N; Joshi S; Satyanarayana T; Pati PK; Tsang A; Chadha BS
    Int J Biol Macromol; 2018 Mar; 108():185-192. PubMed ID: 29174359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The enzymatic hydrolysis and fermentation of pretreated wheat straw to ethanol.
    Szczodrak J
    Biotechnol Bioeng; 1988 Sep; 32(6):771-6. PubMed ID: 18587784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw.
    García-Aparicio MP; Ballesteros M; Manzanares P; Ballesteros I; González A; Negro MJ
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):353-65. PubMed ID: 18478401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis.
    Knutsen JS; Davis RH
    Appl Biochem Biotechnol; 2004; 113-116():585-99. PubMed ID: 15054279
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates.
    Rosgaard L; Pedersen S; Langston J; Akerhielm D; Cherry JR; Meyer AS
    Biotechnol Prog; 2007; 23(6):1270-6. PubMed ID: 18062669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst.
    Zhou X; Zhao J; Zhang X; Xu Y
    Bioresour Technol; 2019 Oct; 289():121755. PubMed ID: 31301946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.
    Ju X; Bowden M; Engelhard M; Zhang X
    Appl Microbiol Biotechnol; 2014 May; 98(10):4409-20. PubMed ID: 24337347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.
    Parisutham V; Chandran SP; Mukhopadhyay A; Lee SK; Keasling JD
    Bioresour Technol; 2017 Sep; 239():496-506. PubMed ID: 28535986
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Feb; 102(2):457-67. PubMed ID: 18781688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis.
    Kim KH; Hong J
    Bioresour Technol; 2001 Apr; 77(2):139-44. PubMed ID: 11272020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissecting the effect of polyethylene glycol on the enzymatic hydrolysis of diverse lignocellulose.
    Li H; Wang C; Xiao W; Yang Y; Hu P; Dai Y; Jiang Z
    Int J Biol Macromol; 2019 Jun; 131():676-681. PubMed ID: 30904528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Appl Biochem Biotechnol; 2010 Jan; 160(1):280-97. PubMed ID: 19165628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass.
    Sørensen A; Lübeck PS; Lübeck M; Teller PJ; Ahring BK
    Can J Microbiol; 2011 Aug; 57(8):638-50. PubMed ID: 21815831
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates.
    Adlakha N; Sawant S; Anil A; Lali A; Yazdani SS
    Appl Environ Microbiol; 2012 Oct; 78(20):7447-54. PubMed ID: 22904050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.