These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22546481)

  • 61. Enhancement of alkaline-oxidative delignification of wheat straw by semi-batch operation in a stirred tank reactor.
    Hernández-Guzmán A; Navarro-Gutiérrez IM; Meléndez-Hernández PA; Hernández-Beltrán JU; Hernández-Escoto H
    Bioresour Technol; 2020 Sep; 312():123589. PubMed ID: 32498011
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.
    Oliva-Taravilla A; Tomás-Pejó E; Demuez M; González-Fernández C; Ballesteros M
    J Biotechnol; 2016 Jan; 218():94-101. PubMed ID: 26684987
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw.
    Smit AT; Huijgen WJJ
    Bioresour Technol; 2017 Nov; 243():994-999. PubMed ID: 28753744
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hydrolysis of animal manure lignocellulosics for reducing sugar production.
    Wen Z; Liao W; Chen S
    Bioresour Technol; 2004 Jan; 91(1):31-9. PubMed ID: 14585620
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancing enzyme-aided production of fermentable sugars from poplar pulp in the presence of non-ionic surfactants.
    Alhammad A; Adewale P; Kuttiraja M; Christopher LP
    Bioprocess Biosyst Eng; 2018 Aug; 41(8):1133-1142. PubMed ID: 29700656
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw.
    Rodrigues AC; Felby C; Gama M
    Bioresour Technol; 2014 Mar; 156():163-9. PubMed ID: 24502914
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings.
    Gomes D; Gama M; Domingues L
    Biotechnol Biofuels; 2018; 11():111. PubMed ID: 29686729
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: a detailed comparison using convenient kinetic analysis.
    Monschein M; Reisinger C; Nidetzky B
    Bioresour Technol; 2013 Jan; 128():679-87. PubMed ID: 23220402
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation.
    Peng S; Cao Q; Qin Y; Li X; Liu G; Qu Y
    Appl Microbiol Biotechnol; 2017 May; 101(9):3627-3636. PubMed ID: 28161729
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems.
    Tai C; Keshwani D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2628-39. PubMed ID: 24420285
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A circular biorefinery approach for the production of xylooligosaccharides by using mild acid hydrothermal pretreatment of pineapple leaves waste.
    Saini R; Singhania RR; Patel AK; Chen CW; Dong CD
    Bioresour Technol; 2023 Nov; 388():129767. PubMed ID: 37730141
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose.
    Jung YH; Park HM; Kim DH; Yang J; Kim KH
    Appl Biochem Biotechnol; 2017 Jul; 182(3):1108-1120. PubMed ID: 28078651
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood.
    Tengborg C; Galbe M; Zacchi G
    Biotechnol Prog; 2001; 17(1):110-7. PubMed ID: 11170488
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Determination of kinetics and heat of hydrolysis for non-homogenous substrate by isothermal calorimetry.
    Tafoukt D; Soric A; Sigoillot JC; Ferrasse JH
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):643-650. PubMed ID: 28062914
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Temperature dependent cellulase adsorption on lignin from sugarcane bagasse.
    Zanchetta A; Dos Santos ACF; Ximenes E; da Costa Carreira Nunes C; Boscolo M; Gomes E; Ladisch MR
    Bioresour Technol; 2018 Mar; 252():143-149. PubMed ID: 29316500
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Type-dependent action modes of
    Kim IJ; Seo N; An HJ; Kim JH; Harris PV; Kim KH
    Biotechnol Biofuels; 2017; 10():46. PubMed ID: 28250814
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates.
    Xiao Z; Zhang X; Gregg DJ; Saddler JN
    Appl Biochem Biotechnol; 2004; 113-116():1115-26. PubMed ID: 15054257
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(3):807-19. PubMed ID: 19504581
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid.
    Han J; Cao R; Zhou X; Xu Y
    Bioresour Technol; 2020 Jul; 307():123200. PubMed ID: 32222689
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Producing high sugar concentrations from loblolly pine using wet explosion pretreatment.
    Rana D; Rana V; Ahring BK
    Bioresour Technol; 2012 Oct; 121():61-7. PubMed ID: 22854131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.