BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22546548)

  • 41. Cholesterol efflux pathways regulate myelopoiesis: a potential link to altered macrophage function in atherosclerosis.
    Murphy AJ; Dragoljevic D; Tall AR
    Front Immunol; 2014; 5():490. PubMed ID: 25352845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unorthodox Transcriptional Mechanisms of Lipid-Sensing Nuclear Receptors in Macrophages: Are We Opening a New Chapter?
    Czimmerer Z; Halasz L; Nagy L
    Front Endocrinol (Lausanne); 2020; 11():609099. PubMed ID: 33362723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. IRF2BP2: A New Player at the Crossroads of Inflammation and Lipid Metabolism.
    Zhang H; Reilly MP
    Circ Res; 2015 Sep; 117(8):656-8. PubMed ID: 26405180
    [No Abstract]   [Full Text] [Related]  

  • 44. [Nuclear receptors and renal water transport regulation].
    Wang B; Zhang XY
    Sheng Li Xue Bao; 2018 Dec; 70(6):630-638. PubMed ID: 30560272
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear receptors in vascular biology.
    Bishop-Bailey D
    Curr Atheroscler Rep; 2015 May; 17(5):507. PubMed ID: 25772409
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reprogramming cholesterol metabolism in macrophages and its role in host defense against cholesterol-dependent cytolysins.
    Lee MS; Bensinger SJ
    Cell Mol Immunol; 2022 Mar; 19(3):327-336. PubMed ID: 35017717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Liver X Receptors as Therapeutic Targets for Managing Cholesterol: Implications for Atherosclerosis and Other Inflammatory Conditions.
    Zhang Y; Chan JF; Cummins CL
    Clin Lipidol; 2009 Feb; 4(1):29-40. PubMed ID: 20852746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cholesterol-receptor-mediated genomics in health and disease.
    Kaul D
    Trends Mol Med; 2003 Oct; 9(10):442-9. PubMed ID: 14557057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nuclear receptor control of opposing macrophage phenotypes in cardiovascular disease.
    Frieler RA; Ramnarayanan S; Mortensen RM
    Front Biosci (Landmark Ed); 2012 Jan; 17(5):1917-30. PubMed ID: 22201845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Biological function of endoecology (cleanliness of intercellular environment) realize two biolocical reactions: excretion reaction and inflammation reaction - utilization in vivo, in situ catabolites of the large molecular mass.].
    Titov VN
    Klin Lab Diagn; 2018; 63(11):668-676. PubMed ID: 30776199
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular control of tissue-resident macrophage identity by nuclear receptors.
    Porcuna J; Menéndez-Gutiérrez MP; Ricote M
    Curr Opin Pharmacol; 2020 Aug; 53():27-34. PubMed ID: 32403022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of platelets on macrophage lipoprotein metabolism.
    Aviram M
    Atherosclerosis; 1988 Oct; 73(2-3):269-71. PubMed ID: 3190824
    [No Abstract]   [Full Text] [Related]  

  • 53. Macrophages in homeostatic immune function.
    Jantsch J; Binger KJ; Müller DN; Titze J
    Front Physiol; 2014; 5():146. PubMed ID: 24847274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crosstalk between reverse cholesterol transport and innate immunity.
    Azzam KM; Fessler MB
    Trends Endocrinol Metab; 2012 Apr; 23(4):169-78. PubMed ID: 22406271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Multifaceted Nature of Macrophages in Cardiovascular Disease.
    Li CX; Yue L
    Biomedicines; 2024 Jun; 12(6):. PubMed ID: 38927523
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cholesterol Metabolism in T Cells.
    Bietz A; Zhu H; Xue M; Xu C
    Front Immunol; 2017; 8():1664. PubMed ID: 29230226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corrigendum to: Macrophage angiotensin-converting enzyme reduces atherosclerosis by increasing peroxisome proliferator-activated receptor α and fundamentally changing lipid metabolism.
    Cardiovasc Res; 2024 Jul; 120(8):971. PubMed ID: 38301662
    [No Abstract]   [Full Text] [Related]  

  • 58. Macrophages: Dissolving cholesterol to unclog arteries.
    Leavy O
    Nat Rev Immunol; 2016 Apr; 16(5):274-5. PubMed ID: 27121648
    [No Abstract]   [Full Text] [Related]  

  • 59. [The cholesterol metabolism in macrophages and its regulators].
    Gong YN; Li FR; Yao WJ
    Sheng Li Ke Xue Jin Zhan; 2016 Aug; 47(4):291-4. PubMed ID: 29889476
    [No Abstract]   [Full Text] [Related]  

  • 60. Oxidized Low-Density Lipoprotein Accumulation in Macrophages Impairs Lipopolysaccharide-Induced Activation of AKT2, ATP Citrate Lyase, Acetyl-Coenzyme A Production, and Inflammatory Gene H3K27 Acetylation.
    Ting KKY; Yu P; Iyayi M; Dow R; Hyduk SJ; Floro E; Ibrahim H; Karim S; Polenz CK; Winer DA; Woo M; Rocheleau J; Jongstra-Bilen J; Cybulsky MI
    Immunohorizons; 2024 Jan; 8(1):57-73. PubMed ID: 38193847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.