These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2254657)

  • 21. Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum.
    Larsen JO; Skalicky M; Viidik A
    J Comp Neurol; 2000 Dec; 428(2):213-22. PubMed ID: 11064362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture.
    Carletti B; Williams IM; Leto K; Nakajima K; Magrassi L; Rossi F
    Dev Biol; 2008 May; 317(1):147-60. PubMed ID: 18384765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The effect of methylazoxymethanol on neuronal differentiation in the murine cerebellum].
    Marshak TL; Mares V; Pavlik A
    Ontogenez; 1993; 24(2):62-9. PubMed ID: 8488013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of low-level x-irradiation on cat cerebella at different postnatal intervals. I. Quantitative evaluation of morphological changes.
    Anderson WJ; Stromberg MW
    J Comp Neurol; 1977 Jan; 171(1):17-37. PubMed ID: 830669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for an axonal localization of the type 2 corticotropin-releasing factor receptor during postnatal development of the mouse cerebellum.
    Lee KH; Bishop GA; Tian JB; King JS
    Exp Neurol; 2004 May; 187(1):11-22. PubMed ID: 15081583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum.
    Inouye M; Murakami U
    J Comp Neurol; 1980 Dec; 194(3):499-503. PubMed ID: 7451678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebellar granule cells show age-dependent migratory differences in vitro.
    Tárnok K; Czirók A; Czöndör K; Schlett K
    J Neurobiol; 2005 Nov; 65(2):135-45. PubMed ID: 16114030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stereological quantification of the cerebellum in patients with Alzheimer's disease.
    Andersen K; Andersen BB; Pakkenberg B
    Neurobiol Aging; 2012 Jan; 33(1):197.e11-20. PubMed ID: 20728248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purkinje cell loss in the cerebellum of ataxic mutant mouse, dilute-lethal: a fractionator study.
    Sawada K; Sakata-Haga H; Jeong YG; Azad MA; Ohkita S; Fukui Y
    Congenit Anom (Kyoto); 2004 Dec; 44(4):189-95. PubMed ID: 15566409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice.
    Carletti B; Rossi F
    Eur J Neurosci; 2005 Sep; 22(5):1001-12. PubMed ID: 16176342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal changes of the number and lobular distribution of acid phosphatase positive and lipid granule-containing cells in the cerebellum of hyperbilirubinemic Gunn rats.
    Keino H; Aoki E; Kashiwamata S
    Neurosci Res; 1986 Feb; 3(3):183-95. PubMed ID: 3703381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphometric analyses of Purkinje and granule cells in aging F344 rats.
    Dlugos CA; Pentney RJ
    Neurobiol Aging; 1994; 15(4):435-40. PubMed ID: 7969720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantitative study of the human cerebellum with unbiased stereological techniques.
    Andersen BB; Korbo L; Pakkenberg B
    J Comp Neurol; 1992 Dec; 326(4):549-60. PubMed ID: 1484123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental approaches to the study of degenerative and regenerative processes in the nervous tissue. I). Morphological changes in the frog cerebellum after unilateral transection of the VIII statoacustic nerve.
    Vignola C; Scherini E; Valli P; Bernocchi G
    J Hirnforsch; 1992; 33(4-5):509-14. PubMed ID: 1479191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of neuron number in the subthalamic and entopeduncular nuclei of the ageing mouse brain.
    Sturrock RR
    J Anat; 1991 Dec; 179():67-73. PubMed ID: 1817143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytophotometric identification of tetraploid Purkinje cells in young and aged rats.
    Bohn RC; Mitchell RB
    J Neurobiol; 1976 May; 7(3):255-8. PubMed ID: 1271056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebellar granule cells are generated postnatally in humans.
    Kiessling MC; Büttner A; Butti C; Müller-Starck J; Milz S; Hof PR; Frank HG; Schmitz C
    Brain Struct Funct; 2014 Jul; 219(4):1271-86. PubMed ID: 23716277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Number of Purkinje cells with an increased DNA content in rat cerebellum].
    Marshak TL; Maresh V; Brodskiĭ VIa
    Tsitologiia; 1978 Jun; 20(6):651-6. PubMed ID: 695000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postnatal cerebellar granule cells of the white rat (Rattus norvegicus): a quantitative study, using design-based stereology.
    Monteiro RA; Henrique RM; Oliveira MH; Silva MW; Rocha E
    Ann Anat; 2005 Apr; 187(2):161-73. PubMed ID: 15900702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerebellar plasticity: modification of Purkinje cell structure by differential rearing in monkeys.
    Floeter MK; Greenough WT
    Science; 1979 Oct; 206(4415):227-9. PubMed ID: 113873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.