These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 22546631)
41. The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Cachada A; Pereira R; da Silva EF; Duarte AC Sci Total Environ; 2014 Feb; 472():463-80. PubMed ID: 24300458 [TBL] [Abstract][Full Text] [Related]
42. Supercritical fluid extraction of persistent organic pollutants from natural and artificial soils and comparison with bioaccumulation in earthworms. Bielská L; Šmídová K; Hofman J Environ Pollut; 2013 May; 176():48-54. PubMed ID: 23416268 [TBL] [Abstract][Full Text] [Related]
43. Bioaccumulation of perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) by earthworms (Eisenia fetida) in soil. Zhao S; Zhu L; Liu L; Liu Z; Zhang Y Environ Pollut; 2013 Aug; 179():45-52. PubMed ID: 23644275 [TBL] [Abstract][Full Text] [Related]
44. Modeling trade-off between PAH toxicity reduction and negative effects of sorbent amendments to contaminated sediments. Kupryianchyk D; Rakowska MI; Grotenhuis JT; Koelmans AA Environ Sci Technol; 2012 May; 46(9):4975-84. PubMed ID: 22420612 [TBL] [Abstract][Full Text] [Related]
45. Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Sasek V; Bhatt M; Cajthaml T; Malachová K; Lednická D Arch Environ Contam Toxicol; 2003 Apr; 44(3):336-42. PubMed ID: 12712293 [TBL] [Abstract][Full Text] [Related]
46. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain. Vermeulen F; Covaci A; D'Havé H; Van den Brink NW; Blust R; De Coen W; Bervoets L Environ Int; 2010 Oct; 36(7):721-7. PubMed ID: 20579736 [TBL] [Abstract][Full Text] [Related]
47. Bioaccumulation and bioavailability of polybrominated diphenyl ethers [corrected] (PBDEs) in soil. Liang X; Zhu S; Chen P; Zhu L Environ Pollut; 2010 Jul; 158(7):2387-92. PubMed ID: 20483516 [TBL] [Abstract][Full Text] [Related]
48. Native oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability. Arp HP; Lundstedt S; Josefsson S; Cornelissen G; Enell A; Allard AS; Kleja DB Environ Sci Technol; 2014 Oct; 48(19):11187-95. PubMed ID: 25216345 [TBL] [Abstract][Full Text] [Related]
49. Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Hu XY; Wen B; Zhang S; Shan XQ Ecotoxicol Environ Saf; 2005 Sep; 62(1):26-34. PubMed ID: 15978288 [TBL] [Abstract][Full Text] [Related]
50. Comparative studies of multi-walled carbon nanotubes (MWNTs) and octadecyl (C18) as sorbents in passive sampling devices for biomimetic uptake of polycyclic aromatic hydrocarbons (PAHs) from soils. Li S; Anderson TA; Maul JD; Shrestha B; Green MJ; Cañas-Carrell JE Sci Total Environ; 2013 Sep; 461-462():560-7. PubMed ID: 23756215 [TBL] [Abstract][Full Text] [Related]
51. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon. Kupryianchyk D; Noori A; Rakowska MI; Grotenhuis JT; Koelmans AA Environ Sci Technol; 2013 May; 47(10):5092-100. PubMed ID: 23590290 [TBL] [Abstract][Full Text] [Related]
52. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Yang Y; Zhang N; Xue M; Lu ST; Tao S Environ Pollut; 2011 Feb; 159(2):591-5. PubMed ID: 21044811 [TBL] [Abstract][Full Text] [Related]
53. Advection dominated transport of polycyclic aromatic hydrocarbons in amended sediment caps. Gidley PT; Kwon S; Yakirevich A; Magar VS; Ghosh U Environ Sci Technol; 2012 May; 46(9):5032-9. PubMed ID: 22480244 [TBL] [Abstract][Full Text] [Related]
54. Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment. Vasseur P; Bonnard M; Palais F; Eom IC; Morel JL Environ Toxicol; 2008 Oct; 23(5):652-6. PubMed ID: 18561306 [TBL] [Abstract][Full Text] [Related]
56. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon. Rakowska MI; Kupryianchyk D; Smit MP; Koelmans AA; Grotenhuis JT; Rijnaarts HH Water Res; 2014 Mar; 51():86-95. PubMed ID: 24397912 [TBL] [Abstract][Full Text] [Related]
57. Responses of wild plant species to polycyclic aromatic hydrocarbons in soil. Hong SH; Kang BH; Kang MH; Chung JW; Jun WJ; Chung JI; Kim MC; Shim SI J Environ Monit; 2009 Sep; 11(9):1664-72. PubMed ID: 19724837 [TBL] [Abstract][Full Text] [Related]
58. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions. Marinussen MP; Van der Zee SE; de Haan FA Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396 [TBL] [Abstract][Full Text] [Related]
59. Influence of biochar particle size on biota responses. Prodana M; Silva C; Gravato C; Verheijen FGA; Keizer JJ; Soares AMVM; Loureiro S; Bastos AC Ecotoxicol Environ Saf; 2019 Jun; 174():120-128. PubMed ID: 30825734 [TBL] [Abstract][Full Text] [Related]
60. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. Olson PE; Castro A; Joern M; DuTeau NM; Pilon-Smits EA; Reardon KF J Environ Qual; 2007; 36(5):1461-9. PubMed ID: 17766825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]