BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22546631)

  • 61. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal.
    Arao T; Maejima Y; Baba K
    Environ Pollut; 2011 Oct; 159(10):2449-53. PubMed ID: 21782301
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Annetocin and TCTP expressions in the earthworm Eisenia fetida exposed to PAHs in artificial soil.
    Zheng S; Song Y; Qiu X; Sun T; Ackland ML; Zhang W
    Ecotoxicol Environ Saf; 2008 Oct; 71(2):566-73. PubMed ID: 18096229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [EVALUATION OF MIGRATION ABILITY OF POLYCHLORINATED BIPHENYLS IN THE "SOIL-PLANT" AND "SOIL-EARTHWORMS"].
    Baeva YI; Chernykh NA
    Gig Sanit; 2016; 95(4):336-9. PubMed ID: 27430062
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of chronic low-level PAH contamination of soil invertebrate communities.
    Erstfeld KM; Snow-Ashbrook J
    Chemosphere; 1999 Nov; 39(12):2117-39. PubMed ID: 10576111
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhanced dissipation of polycyclic aromatic hydrocarbons in the presence of fresh plant residues and their extracts.
    Chen B; Yuan M
    Environ Pollut; 2012 Feb; 161():199-205. PubMed ID: 22230086
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions.
    Augustenborg CA; Hepp S; Kammann C; Hagan D; Schmidt O; Müller C
    J Environ Qual; 2012; 41(4):1203-9. PubMed ID: 22751063
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus.
    Hyötyläinen T; Oikari A
    Chemosphere; 2004 Oct; 57(2):159-64. PubMed ID: 15294439
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of phenanthrene on the mortality, growth, and anti-oxidant system of earthworms (Eisenia fetida) under laboratory conditions.
    Wu S; Wu E; Qiu L; Zhong W; Chen J
    Chemosphere; 2011 Apr; 83(4):429-34. PubMed ID: 21296377
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Passive samplers provide a better prediction of PAH bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions.
    Gomez-Eyles JL; Jonker MT; Hodson ME; Collins CD
    Environ Sci Technol; 2012 Jan; 46(2):962-9. PubMed ID: 22191550
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Porous organoclay composite for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater.
    Ake CL; Wiles MC; Huebner HJ; McDonald TJ; Cosgriff D; Richardson MB; Donnelly KC; Phillips TD
    Chemosphere; 2003 Jun; 51(9):835-44. PubMed ID: 12697173
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of eight polycyclic aromatic compounds on the survival and reproduction of Enchytraeus crypticus (Oligochaeta, Clitellata).
    Sverdrup LE; Jensen J; Kelley AE; Krogh PH; Stenersen J
    Environ Toxicol Chem; 2002 Jan; 21(1):109-14. PubMed ID: 11804043
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Accumulation characteristics of endosulfan soil residues in soybean and reduction in their phytoavailability by treatment with powdered activated carbon.
    Hwang JI; Wilson PC; Kim JE
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21260-21272. PubMed ID: 32266632
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel, Activated Carbon-Based Material for in-Situ Remediation of Contaminated Sediments.
    Abel S; Akkanen J
    Environ Sci Technol; 2019 Mar; 53(6):3217-3224. PubMed ID: 30781950
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Critical analysis and mapping of research trends and impact assessment of polyaromatic hydrocarbon accumulation in leaves: let history tell the future.
    Mandal V; Chouhan KBS; Tandey R; Sen KK; Kala HK; Mehta R
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22464-22474. PubMed ID: 29938381
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species.
    Bouguerra S; Gavina A; Ksibi M; Rasteiro Mda G; Rocha-Santos T; Pereira R
    Ecotoxicol Environ Saf; 2016 Jul; 129():291-301. PubMed ID: 27060256
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ecotoxicological Effects of Aflatoxins on Earthworms under Different Temperature and Moisture Conditions.
    Fouché T; Claassens S; Maboeta MS
    Toxins (Basel); 2022 Jan; 14(2):. PubMed ID: 35202103
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of biosolid hydrochar on toxicity to earthworms and brine shrimp.
    Melo TM; Bottlinger M; Schulz E; Leandro WM; de Aguiar Filho AM; Ok YS; Rinklebe J
    Environ Geochem Health; 2017 Dec; 39(6):1351-1364. PubMed ID: 28620817
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Remediation of PFAS-Contaminated Soil and Granular Activated Carbon by Smoldering Combustion.
    Duchesne AL; Brown JK; Patch DJ; Major D; Weber KP; Gerhard JI
    Environ Sci Technol; 2020 Oct; 54(19):12631-12640. PubMed ID: 32822535
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of treatment with sodium fluoride and subsequent starvation on fluoride content of earthworms.
    Walton KC
    Bull Environ Contam Toxicol; 1987 Jan; 38(1):163-70. PubMed ID: 3814846
    [No Abstract]   [Full Text] [Related]  

  • 80. Earthworms' place on Earth.
    Fierer N
    Science; 2019 Oct; 366(6464):425-426. PubMed ID: 31649184
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.