BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 22546825)

  • 1. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus.
    Sharma V; Chaudhary S; Srivastava S; Pandey R; Kumar S
    J Genet; 2012; 91(1):49-69. PubMed ID: 22546825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don.
    Dutta A; Batra J; Pandey-Rai S; Singh D; Kumar S; Sen J
    Planta; 2005 Jan; 220(3):376-83. PubMed ID: 15714355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.
    Benyammi R; Paris C; Khelifi-Slaoui M; Zaoui D; Belabbassi O; Bakiri N; Meriem Aci M; Harfi B; Malik S; Makhzoum A; Desobry S; Khelifi L
    Pharm Biol; 2016 Oct; 54(10):2033-43. PubMed ID: 26983347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening 64 cultivars Catharanthus roseus for the production of vindoline, catharanthine, and serpentine.
    Chung IM; Kim EH; Li M; Peebles CA; Jung WS; Song HK; Ahn JK; San KY
    Biotechnol Prog; 2011 Jul; 27(4):937-43. PubMed ID: 21674816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots.
    Singh S; Pandey SS; Shanker K; Kalra A
    J Appl Microbiol; 2020 Apr; 128(4):1128-1142. PubMed ID: 31821696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots.
    Zhao L; Sander GW; Shanks JV
    Adv Biochem Eng Biotechnol; 2013; 134():23-54. PubMed ID: 23576053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.).
    Marathi B; Guleria S; Mohapatra T; Parsad R; Mariappan N; Kurungara VK; Atwal SS; Prabhu KV; Singh NK; Singh AK
    BMC Plant Biol; 2012 Aug; 12():137. PubMed ID: 22876968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br].
    Aparna K; Nepolean T; Srivastsava RK; Kholová J; Rajaram V; Kumar S; Rekha B; Senthilvel S; Hash CT; Vadez V
    Plant Biol (Stuttg); 2015 Sep; 17(5):1073-84. PubMed ID: 25946470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of recombinant Catharanthus roseus stem cells stably overexpressing ORCA4 for terpenoid indole alkaloids biosynthesis.
    Yang Y; Ding L; Zhou Y; Guo Z; Yu R; Zhu J
    Plant Physiol Biochem; 2023 Mar; 196():783-792. PubMed ID: 36848864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants.
    Pan Q; Saiman MZ; Mustafa NR; Verpoorte R; Tang K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Mar; 1014():10-6. PubMed ID: 26854826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus.
    Shokeen B; Choudhary S; Sethy NK; Bhatia S
    Ann Bot; 2011 Aug; 108(2):321-36. PubMed ID: 21788377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in Catharanthus roseus.
    Pan YJ; Lin YC; Yu BF; Zu YG; Yu F; Tang ZH
    BMC Genomics; 2018 Jul; 19(1):508. PubMed ID: 29966514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).
    Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S
    Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles.
    Shukla AK; Shasany AK; Gupta MM; Khanuja SP
    J Exp Bot; 2006; 57(14):3921-32. PubMed ID: 17050644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines.
    Pushpavalli R; Krishnamurthy L; Thudi M; Gaur PM; Rao MV; Siddique KH; Colmer TD; Turner NC; Varshney RK; Vadez V
    BMC Plant Biol; 2015 May; 15():124. PubMed ID: 25994494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.
    Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA
    Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production.
    Sun J; Peebles CA
    Protoplasma; 2016 Sep; 253(5):1255-64. PubMed ID: 26351111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
    Kidd T; Easson ML; Qu Y; De Luca V
    Phytochemistry; 2019 Mar; 159():119-126. PubMed ID: 30611871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Cole-Osborn LF; McCallan SA; Prifti O; Abu R; Sjoelund V; Lee-Parsons CWT
    Plant Cell Rep; 2024 May; 43(6):141. PubMed ID: 38743349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci for water-use efficiency in barley (Hordeum vulgare L.) measured by carbon isotope discrimination under rain-fed conditions on the Canadian Prairies.
    Chen J; Chang SX; Anyia AO
    Theor Appl Genet; 2012 Jun; 125(1):71-90. PubMed ID: 22350092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.