These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22547038)

  • 1. Nitrite as a candidate substrate in microbial fuel cells.
    Faraghi N; Ebrahimi S
    Biotechnol Lett; 2012 Aug; 34(8):1483-6. PubMed ID: 22547038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells.
    Jia YH; Tran HT; Kim DH; Oh SJ; Park DH; Zhang RH; Ahn DH
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):315-21. PubMed ID: 17909860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells.
    Huang L; Shi Y; Wang N; Dong Y
    Biodegradation; 2014 Jul; 25(4):615-32. PubMed ID: 24902896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.
    Gao C; Wang A; Wu WM; Yin Y; Zhao YG
    Bioresour Technol; 2014 Sep; 167():124-32. PubMed ID: 24973773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells.
    Juang DF; Yang PC; Chou HY; Chiu LJ
    Biotechnol Lett; 2011 Nov; 33(11):2147-60. PubMed ID: 21750995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.
    Yu Y; Zhao J; Wang S; Zhao H; Ding X; Gao K
    Environ Technol; 2017 Dec; 38(24):3093-3101. PubMed ID: 28278783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autotrophic nitrite removal in the cathode of microbial fuel cells.
    Puig S; Serra M; Vilar-Sanz A; Cabré M; Bañeras L; Colprim J; Balaguer MD
    Bioresour Technol; 2011 Mar; 102(6):4462-7. PubMed ID: 21262566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.
    Sun M; Tong ZH; Sheng GP; Chen YZ; Zhang F; Mu ZX; Wang HL; Zeng RJ; Liu XW; Yu HQ; Wei L; Ma F
    Biosens Bioelectron; 2010 Oct; 26(2):470-6. PubMed ID: 20692154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system.
    Li Z; Zhang X; Lin J; Han S; Lei L
    Bioresour Technol; 2010 Jun; 101(12):4440-5. PubMed ID: 20188540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems.
    Lobato J; Cañizares P; Fernández FJ; Rodrigo MA
    N Biotechnol; 2012 Feb; 29(3):415-20. PubMed ID: 21968392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity production coupled to ammonium in a microbial fuel cell.
    He Z; Kan J; Wang Y; Huang Y; Mansfeld F; Nealson KH
    Environ Sci Technol; 2009 May; 43(9):3391-7. PubMed ID: 19534163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.
    Wang G; Huang L; Zhang Y
    Biotechnol Lett; 2008 Nov; 30(11):1959-66. PubMed ID: 18612596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.
    Cai J; Zheng P; Mahmood Q
    Water Sci Technol; 2016; 73(4):947-54. PubMed ID: 26901739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells.
    Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR
    Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.