BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22547067)

  • 21. Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(+/-) mice.
    Zhang X; Ting K; Bessette CM; Culiat CT; Sung SJ; Lee H; Chen F; Shen J; Wang JJ; Kuroda S; Soo C
    J Bone Miner Res; 2011 Apr; 26(4):777-91. PubMed ID: 20939017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abnormal positioning of diencephalic cell types in neocortical tissue in the dorsal telencephalon of mice lacking functional Gli3.
    Fotaki V; Yu T; Zaki PA; Mason JO; Price DJ
    J Neurosci; 2006 Sep; 26(36):9282-92. PubMed ID: 16957084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BMP signals regulate Dlx5 during early avian skull development.
    Holleville N; Quilhac A; Bontoux M; Monsoro-Burq AH
    Dev Biol; 2003 May; 257(1):177-89. PubMed ID: 12710966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms in calvarial bone and suture development, and their relation to craniosynostosis.
    Rice DP; Rice R; Thesleff I
    Eur J Orthod; 2003 Apr; 25(2):139-48. PubMed ID: 12737212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel Gli3 enhancer controls the Gli3 spatiotemporal expression pattern through a TALE homeodomain protein binding site.
    Coy S; Caamaño JH; Carvajal J; Cleary ML; Borycki AG
    Mol Cell Biol; 2011 Apr; 31(7):1432-43. PubMed ID: 21262763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic analysis of Runx2 function during intramembranous ossification.
    Takarada T; Nakazato R; Tsuchikane A; Fujikawa K; Iezaki T; Yoneda Y; Hinoi E
    Development; 2016 Jan; 143(2):211-8. PubMed ID: 26657773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upregulated osterix expression elicited by Runx2 and Dlx5 is required for the accelerated osteoblast differentiation in PP2A Cα-knockdown cells.
    Yang D; Okamura H; Qiu L
    Cell Biol Int; 2018 Apr; 42(4):403-410. PubMed ID: 29068100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation.
    Matsubara T; Kida K; Yamaguchi A; Hata K; Ichida F; Meguro H; Aburatani H; Nishimura R; Yoneda T
    J Biol Chem; 2008 Oct; 283(43):29119-25. PubMed ID: 18703512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FAD104, a regulatory factor of adipogenesis, acts as a novel regulator of calvarial bone formation.
    Kishimoto K; Nishizuka M; Katoh D; Kato A; Osada S; Imagawa M
    J Biol Chem; 2013 Nov; 288(44):31772-83. PubMed ID: 24052261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A proteomic approach identifies SAFB-like transcription modulator (SLTM) as a bidirectional regulator of GLI family zinc finger transcription factors.
    Zhang Z; Zhan X; Kim B; Wu J
    J Biol Chem; 2019 Apr; 294(14):5549-5561. PubMed ID: 30782847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model.
    Gustafson JA; Park SS; Cunningham ML
    PLoS One; 2019; 14(8):e0221402. PubMed ID: 31442251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus.
    Hasenpusch-Theil K; Magnani D; Amaniti EM; Han L; Armstrong D; Theil T
    Cereb Cortex; 2012 Dec; 22(12):2878-93. PubMed ID: 22235033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function.
    Shimoyama A; Wada M; Ikeda F; Hata K; Matsubara T; Nifuji A; Noda M; Amano K; Yamaguchi A; Nishimura R; Yoneda T
    Mol Biol Cell; 2007 Jul; 18(7):2411-8. PubMed ID: 17442891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription.
    Li Q; Lex RK; Chung H; Giovanetti SM; Ji Z; Ji H; Person MD; Kim J; Vokes SA
    J Biol Chem; 2016 Mar; 291(13):7171-82. PubMed ID: 26797124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metopic craniosynostosis due to mutations in GLI3: A novel association.
    McDonald-McGinn DM; Feret H; Nah HD; Bartlett SP; Whitaker LA; Zackai EH
    Am J Med Genet A; 2010 Jul; 152A(7):1654-60. PubMed ID: 20583172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The expression of Gli3, regulated by HOXD13, may play a role in idiopathic congenital talipes equinovarus.
    Cao D; Jin C; Ren M; Lin C; Zhang X; Zhao N
    BMC Musculoskelet Disord; 2009 Nov; 10():142. PubMed ID: 19925654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype.
    Phimphilai M; Zhao Z; Boules H; Roca H; Franceschi RT
    J Bone Miner Res; 2006 Apr; 21(4):637-46. PubMed ID: 16598384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Hedgehog transcription factor Gli3 modulates angiogenesis.
    Renault MA; Roncalli J; Tongers J; Misener S; Thorne T; Jujo K; Ito A; Clarke T; Fung C; Millay M; Kamide C; Scarpelli A; Klyachko E; Losordo DW
    Circ Res; 2009 Oct; 105(8):818-26. PubMed ID: 19729595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations.
    Jamsheer A; Sowińska A; Trzeciak T; Jamsheer-Bratkowska M; Geppert A; Latos-Bieleńska A
    J Appl Genet; 2012 Nov; 53(4):415-22. PubMed ID: 22903559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gli activity is critical at multiple stages of embryonic mammary and nipple development.
    Chandramouli A; Hatsell SJ; Pinderhughes A; Koetz L; Cowin P
    PLoS One; 2013; 8(11):e79845. PubMed ID: 24260306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.