These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22547148)
1. Role of wing pronation in evasive steering of locusts. Ribak G; Rand D; Weihs D; Ayali A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):541-55. PubMed ID: 22547148 [TBL] [Abstract][Full Text] [Related]
2. Acoustic startle/escape reactions in tethered flying locusts: motor patterns and wing kinematics underlying intentional steering. Dawson JW; Leung FH; Robertson RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):581-600. PubMed ID: 15127218 [TBL] [Abstract][Full Text] [Related]
3. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects. McMillan GA; Loessin V; Gray JR J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560 [TBL] [Abstract][Full Text] [Related]
4. Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? Walker SM; Thomas AL; Taylor GK J R Soc Interface; 2009 Sep; 6(38):735-47. PubMed ID: 19091683 [TBL] [Abstract][Full Text] [Related]
5. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli. Chan RW; Gabbiani F J Exp Biol; 2013 Feb; 216(Pt 4):641-55. PubMed ID: 23364572 [TBL] [Abstract][Full Text] [Related]
6. Gliding behaviour elicited by lateral looming stimuli in flying locusts. Santer RD; Simmons PJ; Rind FC J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):61-73. PubMed ID: 15558287 [TBL] [Abstract][Full Text] [Related]
7. The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation. Wootton RJ; Evans KE; Herbert R; Smith CW J Exp Biol; 2000 Oct; 203(Pt 19):2921-31. PubMed ID: 10976029 [TBL] [Abstract][Full Text] [Related]
8. Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies. Walker SM; Thomas AL; Taylor GK J R Soc Interface; 2009 Apr; 6(33):351-66. PubMed ID: 18682361 [TBL] [Abstract][Full Text] [Related]
9. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure. Herbert RC; Young PG; Smith CW; Wootton RJ; Evans KE J Exp Biol; 2000 Oct; 203(Pt 19):2945-55. PubMed ID: 10976031 [TBL] [Abstract][Full Text] [Related]
10. Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. Burrows M J Exp Biol; 1975 Feb; 62(1):189-219. PubMed ID: 168304 [TBL] [Abstract][Full Text] [Related]
11. Synchronization of wing beat cycle of the desert locust, Schistocerca gregaria, by periodic light flashes. Schmeling F; Stange G; Homberg U J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Mar; 196(3):199-211. PubMed ID: 20131057 [TBL] [Abstract][Full Text] [Related]
13. Forewing asymmetries during auditory avoidance in flying locusts. Dawson J; Dawson-Scully K; Robert D; RobertsonÝ R J Exp Biol; 1997; 200(Pt 17):2323-35. PubMed ID: 9320244 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. Taylor GK; Zbikowski R J R Soc Interface; 2005 Jun; 2(3):197-221. PubMed ID: 16849180 [TBL] [Abstract][Full Text] [Related]
15. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Young J; Walker SM; Bomphrey RJ; Taylor GK; Thomas AL Science; 2009 Sep; 325(5947):1549-52. PubMed ID: 19762645 [TBL] [Abstract][Full Text] [Related]
16. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. Rind FC; Santer RD; Wright GA J Neurophysiol; 2008 Aug; 100(2):670-80. PubMed ID: 18509080 [TBL] [Abstract][Full Text] [Related]
17. Time-varying span efficiency through the wingbeat of desert locusts. Henningsson P; Bomphrey RJ J R Soc Interface; 2012 Jun; 9(71):1177-86. PubMed ID: 22112649 [TBL] [Abstract][Full Text] [Related]
18. Role of an identified looming-sensitive neuron in triggering a flying locust's escape. Santer RD; Rind FC; Stafford R; Simmons PJ J Neurophysiol; 2006 Jun; 95(6):3391-400. PubMed ID: 16452263 [TBL] [Abstract][Full Text] [Related]
19. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity. Kutsch W; Berger S; Kautz H J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802 [TBL] [Abstract][Full Text] [Related]
20. Dynamic flight stability in the desert locust Schistocerca gregaria. Taylor GK; Thomas AL J Exp Biol; 2003 Aug; 206(Pt 16):2803-29. PubMed ID: 12847126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]