These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 22547177)
1. Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: correspondence with the mushroom body ground pattern. Wolff G; Harzsch S; Hansson BS; Brown S; Strausfeld N J Comp Neurol; 2012 Sep; 520(13):2824-46. PubMed ID: 22547177 [TBL] [Abstract][Full Text] [Related]
2. Fine structural organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus. Brown S; Wolff G J Comp Neurol; 2012 Sep; 520(13):2847-63. PubMed ID: 22318704 [TBL] [Abstract][Full Text] [Related]
3. Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. Strausfeld NJ; Sayre ME J Comp Neurol; 2020 Feb; 528(2):261-282. PubMed ID: 31376285 [TBL] [Abstract][Full Text] [Related]
4. Parasol cells of the hemiellipsoid body in the crayfish Procambarus clarkii: dendritic branching patterns and functional implications. McKinzie ME; Benton JL; Beltz BS; Mellon D J Comp Neurol; 2003 Jul; 462(2):168-79. PubMed ID: 12794741 [TBL] [Abstract][Full Text] [Related]
5. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. Harzsch S; Hansson BS BMC Neurosci; 2008 Jun; 9():58. PubMed ID: 18590553 [TBL] [Abstract][Full Text] [Related]
6. Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana. Li Y; Strausfeld NJ J Comp Neurol; 1997 Nov; 387(4):631-50. PubMed ID: 9373016 [TBL] [Abstract][Full Text] [Related]
7. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Krieger J; Sandeman RE; Sandeman DC; Hansson BS; Harzsch S Front Zool; 2010 Sep; 7():25. PubMed ID: 20831795 [TBL] [Abstract][Full Text] [Related]
8. Neuropeptide complexity in the crustacean central olfactory pathway: immunolocalization of A-type allatostatins and RFamide-like peptides in the brain of a terrestrial hermit crab. Polanska MA; Tuchina O; Agricola H; Hansson BS; Harzsch S Mol Brain; 2012 Sep; 5():29. PubMed ID: 22967845 [TBL] [Abstract][Full Text] [Related]
9. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. Harzsch S; Krieger J Arthropod Struct Dev; 2021 Nov; 65():101100. PubMed ID: 34488068 [TBL] [Abstract][Full Text] [Related]
10. Olfactory pathway in Xibalbanus tulumensis: remipedian hemiellipsoid body as homologue of hexapod mushroom body. Stemme T; Iliffe TM; Bicker G Cell Tissue Res; 2016 Mar; 363(3):635-48. PubMed ID: 26358175 [TBL] [Abstract][Full Text] [Related]
11. Modular subdivision of mushroom bodies by Kenyon cells in the silkmoth. Fukushima R; Kanzaki R J Comp Neurol; 2009 Mar; 513(3):315-30. PubMed ID: 19148932 [TBL] [Abstract][Full Text] [Related]
12. Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies. Strausfeld NJ; Li Y J Comp Neurol; 1999 Jul; 409(4):603-25. PubMed ID: 10376743 [TBL] [Abstract][Full Text] [Related]
13. Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect. Farris SM Evol Dev; 2005; 7(2):150-9. PubMed ID: 15733313 [TBL] [Abstract][Full Text] [Related]
14. Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. Butcher NJ; Friedrich AB; Lu Z; Tanimoto H; Meinertzhagen IA J Comp Neurol; 2012 Jul; 520(10):2185-201. PubMed ID: 22237598 [TBL] [Abstract][Full Text] [Related]
15. Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. Strausfeld NJ J Comp Neurol; 2002 Aug; 450(1):4-33. PubMed ID: 12124764 [TBL] [Abstract][Full Text] [Related]
16. Synaptic organization in the adult Drosophila mushroom body calyx. Leiss F; Groh C; Butcher NJ; Meinertzhagen IA; Tavosanis G J Comp Neurol; 2009 Dec; 517(6):808-24. PubMed ID: 19844895 [TBL] [Abstract][Full Text] [Related]
17. Environment- and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens. Groh C; Ahrens D; Rossler W Brain Behav Evol; 2006; 68(1):1-14. PubMed ID: 16557021 [TBL] [Abstract][Full Text] [Related]
18. Comparison of microglomerular structures in the mushroom body calyx of neopteran insects. Groh C; Rössler W Arthropod Struct Dev; 2011 Jul; 40(4):358-67. PubMed ID: 21185946 [TBL] [Abstract][Full Text] [Related]
19. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. Strausfeld NJ; Wolff GH; Sayre ME Elife; 2020 Mar; 9():. PubMed ID: 32124731 [TBL] [Abstract][Full Text] [Related]
20. An insect-like mushroom body in a crustacean brain. Wolff GH; Thoen HH; Marshall J; Sayre ME; Strausfeld NJ Elife; 2017 Sep; 6():. PubMed ID: 28949916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]