These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22547259)

  • 1. Energy analysis of weak electron-donor-acceptor complexes and water clusters with the perturbation theory based on the locally projected molecular orbitals: charge-transfer and dispersion terms.
    Iwata S
    Phys Chem Chem Phys; 2012 Jun; 14(21):7787-94. PubMed ID: 22547259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H2O)20 and (H2O)25 using the charge-transfer and dispersion terms.
    Iwata S
    Phys Chem Chem Phys; 2014 Jun; 16(23):11310-7. PubMed ID: 24800849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative roles of charge transfer and dispersion terms in hydrogen-bonded networks of (H2O)n, n = 6, 11, and 16.
    Iwata S; Bandyopadhyay P; Xantheas SS
    J Phys Chem A; 2013 Aug; 117(30):6641-51. PubMed ID: 23805893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion energy evaluated by using locally projected occupied and excited molecular orbitals for molecular interaction.
    Iwata S
    J Chem Phys; 2011 Sep; 135(9):094101. PubMed ID: 21913747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the nature of stabilization in weak, medium, and strong charge-transfer complexes: CCSD(T)/CBS and SAPT calculations.
    Karthikeyan S; Sedlak R; Hobza P
    J Phys Chem A; 2011 Sep; 115(34):9422-8. PubMed ID: 21375294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolutely local occupied and excited molecular orbitals in the third-order single excitation perturbation theory for molecular interaction.
    Iwata S
    J Phys Chem A; 2010 Aug; 114(33):8697-704. PubMed ID: 20429565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge penetration and the origin of large O-H vibrational red-shifts in hydrated-electron clusters, (H2O)n-.
    Herbert JM; Head-Gordon M
    J Am Chem Soc; 2006 Oct; 128(42):13932-9. PubMed ID: 17044721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-bond interaction in organic conductors: redox activation, molecular recognition, structural regulation, and proton transfer in donor-acceptor charge-transfer complexes of TTF-imidazole.
    Murata T; Morita Y; Yakiyama Y; Fukui K; Yamochi H; Saito G; Nakasuji K
    J Am Chem Soc; 2007 Sep; 129(35):10837-46. PubMed ID: 17696346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages.
    Timoshkin AY; Schaefer HF
    J Am Chem Soc; 2003 Aug; 125(33):9998-10011. PubMed ID: 12914463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals.
    Khaliullin RZ; Bell AT; Head-Gordon M
    J Chem Phys; 2008 May; 128(18):184112. PubMed ID: 18532804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-Bonded Networks in Hydride Water Clusters, F-(H2O)n and Cl-(H2O)n: Cubic Form of F-(H2O)7 and Cl-(H2O)7.
    Ishibashi C; Iwata S; Onoe K; Matsuzawa H
    J Phys Chem A; 2015 Oct; 119(40):10241-53. PubMed ID: 26371716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolutely local excited orbitals in the higher order perturbation expansion for the molecular interaction.
    Iwata S
    J Phys Chem B; 2008 Dec; 112(50):16104-9. PubMed ID: 19367996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.
    Rosokha SV; Kochi JK
    Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level.
    Azar RJ; Head-Gordon M
    J Chem Phys; 2012 Jan; 136(2):024103. PubMed ID: 22260560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation expansion theory corrected from basis set superposition error. I. Locally projected excited orbitals and single excitations.
    Nagata T; Iwata S
    J Chem Phys; 2004 Feb; 120(8):3555-62. PubMed ID: 15268517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study.
    Kyrychenko A; Waluk J
    J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological analysis of the electron density distribution in perturbed systems. I. Effect of charge on the bond properties of hydrogen fluoride.
    Espinosa E; Alkorta I; Mata I; Molins E
    J Phys Chem A; 2005 Jul; 109(29):6532-9. PubMed ID: 16833999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio studies of electron acceptor-donor interactions with blue- and red-shifted hydrogen bonds.
    Rodziewicz P; Rutkowski KS; Melikova SM; Koll A
    Chemphyschem; 2005 Jul; 6(7):1282-92. PubMed ID: 15968700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study on the bromomethane-water 1:2 complexes.
    Wang W; Tian A; Wong NB
    J Phys Chem A; 2005 Sep; 109(35):8035-40. PubMed ID: 16834186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.