BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22547276)

  • 1. Harmonic spatial coherence imaging: an ultrasonic imaging method based on backscatter coherence.
    Dahl J; Jakovljevic M; Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):648-59. PubMed ID: 22547276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo application of short-lag spatial coherence imaging in human liver.
    Jakovljevic M; Trahey GE; Nelson RC; Dahl JJ
    Ultrasound Med Biol; 2013 Mar; 39(3):534-42. PubMed ID: 23347642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Visualization in Difficult-to-Image Stress Echocardiography Patients Using Real-Time Harmonic Spatial Coherence Imaging.
    Hyun D; Crowley ALC; LeFevre M; Cleve J; Rosenberg J; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):433-441. PubMed ID: 30530322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.
    Dahl JJ; Hyun D; Lediju M; Trahey GE
    Ultrason Imaging; 2011 Apr; 33(2):119-33. PubMed ID: 21710827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic aperture focusing for short-lag spatial coherence imaging.
    Bottenus N; Byram BC; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1816-26. PubMed ID: 24658715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Transmit Beamforming on Clutter Levels in Transthoracic Echocardiography.
    Kakkad V; LeFevre M; Roy Choudhury K; Kisslo J; Trahey GE
    Ultrason Imaging; 2018 Jul; 40(4):215-231. PubMed ID: 29683052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations.
    Morgan MR; Hyun D; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; ():. PubMed ID: 30908212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA; Bell MAL
    J Biomed Opt; 2020 Jul; 25(7):1-19. PubMed ID: 32713168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Spatial Coherence Beamformer Design for Power Doppler Imaging.
    Ozgun K; Tierney J; Byram B
    IEEE Trans Med Imaging; 2020 May; 39(5):1558-1570. PubMed ID: 31725374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic Reverberation Clutter Suppression Using Multiphase Apodization With Cross Correlation.
    Shin J; Chen Y; Malhi H; Yen JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1947-1956. PubMed ID: 27824570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoacoustic Spatial Coherence Theory and Applications to Coherence-Based Image Contrast and Resolution.
    Graham MT; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2069-2084. PubMed ID: 32746173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue ultrasound imaging based on wavelet correlation analysis and pulse-inversion technique.
    Zhao X; Yang C; Lyu Y; Xu Y; Han Z; Zhao H
    Technol Health Care; 2024; 32(1):31-53. PubMed ID: 37781821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating skin tone bias in linear array
    Fernandes GSP; Uliana JH; Bachmann L; Carneiro AAO; Lediju Bell MA; Pavan TZ
    Photoacoustics; 2023 Oct; 33():100555. PubMed ID: 38021286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Coherence Adaptive Clutter Filtering in Color Flow Imaging-Part II: Phantom and
    Long W; Bradway D; Ahmed R; Long J; Trahey GE
    IEEE Open J Ultrason Ferroelectr Freq Control; 2022; 2():119-130. PubMed ID: 36712828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise Suppression for Ultrasound Attenuation Coefficient Estimation Based on Spectrum Normalization.
    Gong P; Song P; Huang C; Lok UW; Tang S; Zhou C; Yang L; Watt KD; Callstrom M; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2667-2674. PubMed ID: 33877970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Very Large Cardiac Channel Data Database (VLCD) Used to Evaluate Global Image Coherence (GIC) as an In Vivo Image Quality Metric.
    Rindal OMH; Bjastad TG; Espeland T; Berg EAR; Masoy SE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1295-1307. PubMed ID: 37610900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Observer Sensitivity to Temporal Noise During B-Mode Ultrasound Scanning: Characterization and Imaging Implications.
    Huber MT; Flint KM; McNally PJ; Ellestad SC; Trahey GE
    Ultrason Imaging; 2024 May; 46(3):151-163. PubMed ID: 38497455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Coherence Approaches to Distinguish Suspicious Mass Contents in Fundamental and Harmonic Breast Ultrasound Images.
    Sharma A; Oluyemi E; Myers K; Ambinder E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):70-84. PubMed ID: 37956000
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.