These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22547276)

  • 21. Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.
    Gong P; Song P; Chen S
    IEEE Trans Med Imaging; 2017 Apr; 36(4):952-959. PubMed ID: 27992329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occult Regions of Suppressed Coherence in Liver B-Mode Images.
    Offerdahl K; Huber M; Long W; Bottenus N; Nelson R; Trahey G
    Ultrasound Med Biol; 2022 Jan; 48(1):47-58. PubMed ID: 34702640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic aperture focusing for short-lag spatial coherence imaging.
    Bottenus N; Byram BC; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1816-26. PubMed ID: 24658715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments.
    Jakovljevic M; Byram BC; Hyun D; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1113-22. PubMed ID: 24960701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Sensitivity in Ultrasound Molecular Imaging With Coherence-Based Beamforming.
    Hyun D; Abou-Elkacem L; Perez VA; Chowdhury SM; Willmann JK; Dahl JJ
    IEEE Trans Med Imaging; 2018 Jan; 37(1):241-250. PubMed ID: 29293430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
    Hyun D; Trahey GE; Jakovljevic M; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1101-12. PubMed ID: 24960700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Transmit Beamforming on Clutter Levels in Transthoracic Echocardiography.
    Kakkad V; LeFevre M; Roy Choudhury K; Kisslo J; Trahey GE
    Ultrason Imaging; 2018 Jul; 40(4):215-231. PubMed ID: 29683052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N; Üstüner KF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):852-61. PubMed ID: 25965679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of non-linear beamforming ultrasound methods to characterize and size kidney stones.
    Hsi RS; Schlunk SG; Tierney JE; Dei K; Jones R; George M; Karve P; Duddu R; Byram BC
    PLoS One; 2018; 13(8):e0203138. PubMed ID: 30153279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial coherence in human tissue: implications for imaging and measurement.
    Pinton G; Trahey G; Dahl J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1976-87. PubMed ID: 25474774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short-lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations.
    Morgan MR; Hyun D; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; ():. PubMed ID: 30908212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
    Hasegawa H; Nagaoka R
    Ultrason Imaging; 2020 Jan; 42(1):27-40. PubMed ID: 31802696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.
    Shen CC; Lin CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2420-30. PubMed ID: 23192805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model and regularization scheme for ultrasonic beamforming clutter reduction.
    Byram B; Dei K; Tierney J; Dumont D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Nov; 62(11):1913-27. PubMed ID: 26559622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-lag spatial coherence combined with eigenspace-based minimum variance beamformer for synthetic aperture ultrasound imaging.
    Wang Y; Zheng C; Peng H; Chen X
    Comput Biol Med; 2017 Dec; 91():267-276. PubMed ID: 29102824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial Coherence Beamforming With Multi-Line Transmission to Enhance the Contrast of Coherent Structures in Ultrasound Images Degraded by Acoustic Clutter.
    Matrone G; Bell MAL; Ramalli A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3570-3582. PubMed ID: 34310298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Strategies for Estimating the Spatial Coherence of Backscatter.
    Hyun D; Crowley AL; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):500-513. PubMed ID: 27913342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast Harmonic Coherent Compound (UHCC) Imaging for High Frame Rate Echocardiography and Shear-Wave Elastography.
    Correia M; Provost J; Chatelin S; Villemain O; Tanter M; Pernot M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):420-31. PubMed ID: 26890730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reverberation Clutter Suppression Using 2-D Spatial Coherence Analysis.
    Ahmed R; Bottenus N; Long J; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):84-97. PubMed ID: 34437060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.