These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22547276)

  • 41. Adaptive Models for Multi-Covariate Imaging of Sub-Resolution Targets (MIST).
    Ahmed R; Flint KM; Morgan MR; Trahey GE; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2303-2317. PubMed ID: 35613063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A New Feature-Enhanced Speckle Reduction Method Based on Multiscale Analysis for Ultrasound B-Mode Imaging.
    Kang J; Lee JY; Yoo Y
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1178-91. PubMed ID: 26441443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A pre-clinical phantom comparison of tissue harmonic and brightness mode imaging for application in ultrasound guided prostate brachytherapy.
    Sandhu GK; Dunscombe PB; Khan RF
    Phys Med; 2011 Jul; 27(3):153-62. PubMed ID: 21035371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lag-One Coherence as a Metric for Ultrasonic Image Quality.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1768-1780. PubMed ID: 30010556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase-coded multi-pulse technique for ultrasonic high-order harmonic imaging of biological tissues in vitro.
    Ma Q; Zhang D; Gong X; Ma Y
    Phys Med Biol; 2007 Apr; 52(7):1879-92. PubMed ID: 17374917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Image quality evaluation of ultrasound imaging systems: advanced B-modes.
    Sassaroli E; Crake C; Scorza A; Kim DS; Park MA
    J Appl Clin Med Phys; 2019 Mar; 20(3):115-124. PubMed ID: 30861278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aberration in nonlinear acoustic wave propagation.
    Varslot T; Måsøy SE; Johansen TF; Angelsen B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):470-9. PubMed ID: 17375817
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations.
    Pinton GF; Trahey GE; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):754-65. PubMed ID: 21507753
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA; Bell MAL
    J Biomed Opt; 2020 Jul; 25(7):1-19. PubMed ID: 32713168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generalized spatial coherence reconstruction for photoacoustic computed tomography.
    Tordera Mora J; Feng X; Nyayapathi N; Xia J; Gao L
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33880892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tissue harmonic image analysis based on spatial covariance.
    Shen CC; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1648-56. PubMed ID: 11800127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coherent flow power Doppler (CFPD): flow detection using spatial coherence beamforming.
    Li YL; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1022-35. PubMed ID: 26067037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasound Imaging Using the Coherence of Estimated Channel Data.
    Yen JT; Lou Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2293-2302. PubMed ID: 35604963
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Spatial Coherence Beamformer Design for Power Doppler Imaging.
    Ozgun K; Tierney J; Byram B
    IEEE Trans Med Imaging; 2020 May; 39(5):1558-1570. PubMed ID: 31725374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of subaperture beamforming on phase coherence imaging.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1779-90. PubMed ID: 25389157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Adaptive Synthetic Aperture Method Applied to Ultrasound Tissue Harmonic Imaging.
    Varnosfaderani MHH; Mohammadzadeh Asl B; Faridsoltani S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):557-569. PubMed ID: 29610086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A motion-based approach to abdominal clutter reduction.
    Lediju MA; Pihl MJ; Hsu SJ; Dahl JJ; Gallippi CM; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2437-49. PubMed ID: 19942530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasonic Reverberation Clutter Suppression Using Multiphase Apodization With Cross Correlation.
    Shin J; Chen Y; Malhi H; Yen JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1947-1956. PubMed ID: 27824570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods.
    Zhang N; Ashikuzzaman M; Rivaz H
    Biomed Eng Online; 2020 May; 19(1):37. PubMed ID: 32466753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Subharmonic generation from ultrasonic contrast agents.
    Krishna PD; Shankar PM; Newhouse VL
    Phys Med Biol; 1999 Mar; 44(3):681-94. PubMed ID: 10211802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.