BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 22547295)

  • 21. Application of Acoustoelasticity to Evaluate Nonlinear Modulus in Ex Vivo Kidneys.
    Aristizabal S; Amador Carrascal C; Nenadic IZ; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):188-200. PubMed ID: 29389651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics.
    van Sloun RJG; Wildeboer RR; Wijkstra H; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1666-1673. PubMed ID: 28841556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of shear modulus distribution in soft tissue from strain distribution.
    Sumi C; Suzuki A; Nakayama K
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):193-202. PubMed ID: 7868147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of in-vivo local shear modulus by combining multiple phase offsets mr elastography.
    Suga M; Matsuda T; Minato K; Oshiro O; Chihara K; Okamoto J; Takizawa O; Komori M; Takahashi T
    Stud Health Technol Inform; 2001; 84(Pt 2):933-7. PubMed ID: 11604870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus.
    Pagé G; Bied M; Garteiser P; Van Beers B; Etaix N; Fraschini C; Bel-Brunon A; Gennisson JL
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703895
    [No Abstract]   [Full Text] [Related]  

  • 28. Imaging the shear modulus of the heel fat pads.
    Weaver JB; Doyley M; Cheung Y; Kennedy F; Madsen EL; Van Houten EE; Paulsen K
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):312-9. PubMed ID: 15698705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passive elastography: shear-wave tomography from physiological-noise correlation in soft tissues.
    Gallot T; Catheline S; Roux P; Brum J; Benech N; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1122-6. PubMed ID: 21693392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
    Eskandari H; Baghani A; Salcudean SE; Rohling R
    Phys Med Biol; 2009 Jul; 54(13):3997-4017. PubMed ID: 19502703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Quantification of the Nonlinear Shear Modulus in Breast Lesions: Feasibility Study.
    Bernal M; Chamming's F; Couade M; Bercoff J; Tanter M; Gennisson JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):101-9. PubMed ID: 26625412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noise reduction for ultrasonic elastography using transmit-side frequency compounding: a preliminary study.
    Cui S; Liu DC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):509-16. PubMed ID: 21429843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel deformation method for fast simulation of biological tissue formed by fibers and fluid.
    Costa IF
    Med Image Anal; 2012 Jul; 16(5):1038-46. PubMed ID: 22584040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography.
    Guo J; Posnansky O; Hirsch S; Scheel M; Taupitz M; Braun J; Sack I
    Phys Med Biol; 2012 Jun; 57(12):4041-53. PubMed ID: 22674199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving arrival time identification in transient elastography.
    Klein J; McLaughlin J; Renzi D
    Phys Med Biol; 2012 Apr; 57(8):2151-68. PubMed ID: 22452966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency-domain-based strain estimation and high-frame-rate imaging for quasi-static elastography.
    Ramalli A; Basset O; Cachard C; Boni E; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):817-24. PubMed ID: 22547293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.