These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22547631)

  • 1. Data-based theoretical identification of subcellular calcium compartments and estimation of calcium dynamics in cardiac myocytes.
    Livshitz L; Acsai K; Antoons G; Sipido K; Rudy Y
    J Physiol; 2012 Sep; 590(18):4423-46. PubMed ID: 22547631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac Na+-Ca2+ exchanger: dynamics of Ca2+-dependent activation and deactivation in intact myocytes.
    Ginsburg KS; Weber CR; Bers DM
    J Physiol; 2013 Apr; 591(8):2067-86. PubMed ID: 23401616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcolemmal distribution of
    Gadeberg HC; Kong CHT; Bryant SM; James AF; Orchard CH
    Am J Physiol Heart Circ Physiol; 2017 Jul; 313(1):H190-H199. PubMed ID: 28476922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdomain [Ca²⁺] near ryanodine receptors as reported by L-type Ca²⁺ and Na+/Ca²⁺ exchange currents.
    Acsai K; Antoons G; Livshitz L; Rudy Y; Sipido KR
    J Physiol; 2011 May; 589(Pt 10):2569-83. PubMed ID: 21486798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-tubule remodelling and ryanodine receptor organization modulate sodium-calcium exchange.
    Sipido KR; Acsai K; Antoons G; Bito V; Macquaide N
    Adv Exp Med Biol; 2013; 961():375-83. PubMed ID: 23224896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger.
    Pott C; Yip M; Goldhaber JI; Philipson KD
    Biophys J; 2007 Feb; 92(4):1431-7. PubMed ID: 17114214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells.
    Kapoor N; Tran A; Kang J; Zhang R; Philipson KD; Goldhaber JI
    J Physiol; 2015 Jun; 593(12):2649-63. PubMed ID: 25903031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of factors affecting Ca(2+)-dependent inactivation dynamics of L-type Ca(2+) current of cardiac myocytes in pulmonary vein of rabbit.
    Ryu JS; Kim WT; Lee JH; Kwon JH; Kim HA; Shim EB; Youm JB; Leem CH
    J Physiol; 2012 Sep; 590(18):4447-63. PubMed ID: 22674726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoinositide 3-kinase regulates excitation-contraction coupling in neonatal cardiomyocytes.
    McDowell SA; McCall E; Matter WF; Estridge TB; Vlahos CJ
    Am J Physiol Heart Circ Physiol; 2004 Feb; 286(2):H796-805. PubMed ID: 14563664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice.
    Pott C; Ren X; Tran DX; Yang MJ; Henderson S; Jordan MC; Roos KP; Garfinkel A; Philipson KD; Goldhaber JI
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C968-73. PubMed ID: 16943244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice.
    Larbig R; Torres N; Bridge JH; Goldhaber JI; Philipson KD
    J Physiol; 2010 Sep; 588(Pt 17):3267-76. PubMed ID: 20643777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes.
    Weisser-Thomas J; Piacentino V; Gaughan JP; Margulies K; Houser SR
    Cardiovasc Res; 2003 Mar; 57(4):974-85. PubMed ID: 12650875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of Ca2+ buffering and Na+/Ca2+ exchange in the positive staircase of contraction in guinea-pig ventricular myocytes.
    Kuratomi S; Matsuoka S; Sarai N; Powell T; Noma A
    Pflugers Arch; 2003 Jun; 446(3):347-55. PubMed ID: 12684790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of junctional and non-junctional sarcoplasmic reticulum calcium release in excitation-contraction coupling in cat atrial myocytes.
    Sheehan KA; Blatter LA
    J Physiol; 2003 Jan; 546(Pt 1):119-35. PubMed ID: 12509483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density.
    Biesmans L; Macquaide N; Heinzel FR; Bito V; Smith GL; Sipido KR
    PLoS One; 2011; 6(10):e25100. PubMed ID: 22022376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac sodium transport and excitation-contraction coupling.
    Aronsen JM; Swift F; Sejersted OM
    J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.
    Greenstein JL; Winslow RL
    Biophys J; 2002 Dec; 83(6):2918-45. PubMed ID: 12496068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of junctin in the regulation of ryanodine receptors and calcium release in cardiac ventricular myocytes.
    Altschafl BA; Arvanitis DA; Fuentes O; Yuan Q; Kranias EG; Valdivia HH
    J Physiol; 2011 Dec; 589(Pt 24):6063-80. PubMed ID: 22025663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can the sodium-calcium exchanger initiate or suppress calcium sparks in cardiac myocytes?
    Sato D; Despa S; Bers DM
    Biophys J; 2012 Apr; 102(8):L31-3. PubMed ID: 22768959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.