BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22547687)

  • 1. Phosphoproteomic analysis of leukemia cells under basal and drug-treated conditions identifies markers of kinase pathway activation and mechanisms of resistance.
    Alcolea MP; Casado P; Rodríguez-Prados JC; Vanhaesebroeck B; Cutillas PR
    Mol Cell Proteomics; 2012 Aug; 11(8):453-66. PubMed ID: 22547687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition.
    Kirkpatrick DS; Bustos DJ; Dogan T; Chan J; Phu L; Young A; Friedman LS; Belvin M; Song Q; Bakalarski CE; Hoeflich KP
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19426-31. PubMed ID: 24218548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics.
    Paulo JA; McAllister FE; Everley RA; Beausoleil SA; Banks AS; Gygi SP
    Proteomics; 2015 Jan; 15(2-3):462-73. PubMed ID: 25195567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to mitogen-activated protein kinase kinase (MEK) inhibitors correlates with up-regulation of the MEK/extracellular signal-regulated kinase pathway in hepatocellular carcinoma cells.
    Yip-Schneider MT; Klein PJ; Wentz SC; Zeni A; Menze A; Schmidt CM
    J Pharmacol Exp Ther; 2009 Jun; 329(3):1063-70. PubMed ID: 19258520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia.
    Blalock WL; Navolanic PM; Steelman LS; Shelton JG; Moye PW; Lee JT; Franklin RA; Mirza A; McMahon M; White MK; McCubrey JA
    Leukemia; 2003 Jun; 17(6):1058-67. PubMed ID: 12764369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SWATH-MS proteomics of PANC-1 and MIA PaCa-2 pancreatic cancer cells allows identification of drug targets alternative to MEK and PI3K inhibition.
    Aguilar-Valdés A; Noriega LG; Tovar AR; Ibarra-Sánchez MJ; Sosa-Hernández VA; Maravillas-Montero JL; Martínez-Aguilar J
    Biochem Biophys Res Commun; 2021 May; 552():23-29. PubMed ID: 33740661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments.
    Casado P; Cutillas PR
    Mol Cell Proteomics; 2011 Jan; 10(1):M110.003079. PubMed ID: 20972267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Phospho- and Phosphotyrosine Proteomics Identified Active Kinases and Phosphorylation Networks in Colorectal Cancer Cell Lines Resistant to Cetuximab.
    Abe Y; Nagano M; Kuga T; Tada A; Isoyama J; Adachi J; Tomonaga T
    Sci Rep; 2017 Sep; 7(1):10463. PubMed ID: 28874695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer.
    Sato H; Yamamoto H; Sakaguchi M; Shien K; Tomida S; Shien T; Ikeda H; Hatono M; Torigoe H; Namba K; Yoshioka T; Kurihara E; Ogoshi Y; Takahashi Y; Soh J; Toyooka S
    Cancer Sci; 2018 Oct; 109(10):3183-3196. PubMed ID: 30098066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors.
    Casado P; Alcolea MP; Iorio F; Rodríguez-Prados JC; Vanhaesebroeck B; Saez-Rodriguez J; Joel S; Cutillas PR
    Genome Biol; 2013 Apr; 14(4):R37. PubMed ID: 23628362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells.
    Hochgräfe F; Zhang L; O'Toole SA; Browne BC; Pinese M; Porta Cubas A; Lehrbach GM; Croucher DR; Rickwood D; Boulghourjian A; Shearer R; Nair R; Swarbrick A; Faratian D; Mullen P; Harrison DJ; Biankin AV; Sutherland RL; Raftery MJ; Daly RJ
    Cancer Res; 2010 Nov; 70(22):9391-401. PubMed ID: 20861192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-κB pathways in a model of chronic myeloid leukemia.
    Chorzalska A; Ahsan N; Rao RSP; Roder K; Yu X; Morgan J; Tepper A; Hines S; Zhang P; Treaba DO; Zhao TC; Olszewski AJ; Reagan JL; Liang O; Gruppuso PA; Dubielecka PM
    Mol Oncol; 2018 May; 12(5):630-647. PubMed ID: 29485707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells.
    Martinelli E; Troiani T; D'Aiuto E; Morgillo F; Vitagliano D; Capasso A; Costantino S; Ciuffreda LP; Merolla F; Vecchione L; De Vriendt V; Tejpar S; Nappi A; Sforza V; Martini G; Berrino L; De Palma R; Ciardiello F
    Int J Cancer; 2013 Nov; 133(9):2089-101. PubMed ID: 23629727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling.
    Morgan MA; Dolp O; Reuter CW
    Blood; 2001 Mar; 97(6):1823-34. PubMed ID: 11238126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of combined mTOR and MEK inhibition in uveal melanoma is driven by tumor genotype.
    Ho AL; Musi E; Ambrosini G; Nair JS; Deraje Vasudeva S; de Stanchina E; Schwartz GK
    PLoS One; 2012; 7(7):e40439. PubMed ID: 22808163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEK Inhibitor PD-0325901 Overcomes Resistance to PI3K/mTOR Inhibitor PF-5212384 and Potentiates Antitumor Effects in Human Head and Neck Squamous Cell Carcinoma.
    Mohan S; Vander Broek R; Shah S; Eytan DF; Pierce ML; Carlson SG; Coupar JF; Zhang J; Cheng H; Chen Z; Van Waes C
    Clin Cancer Res; 2015 Sep; 21(17):3946-56. PubMed ID: 25977343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative network analysis of signaling in human CD34(+) hematopoietic progenitor cells by global phosphoproteomic profiling using TiO2 enrichment combined with 2D LC-MS/MS and pathway mapping.
    Guo H; Isserlin R; Chen X; Wang W; Phanse S; Zandstra PW; Paddison PJ; Emili A
    Proteomics; 2013 Apr; 13(8):1325-33. PubMed ID: 23401153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.
    Mascaraque V; Hernáez ML; Jiménez-Sánchez M; Hansen R; Gil C; Martín H; Cid VJ; Molina M
    Mol Cell Proteomics; 2013 Mar; 12(3):557-74. PubMed ID: 23221999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy.
    Thomson S; Petti F; Sujka-Kwok I; Epstein D; Haley JD
    Clin Exp Metastasis; 2008; 25(8):843-54. PubMed ID: 18696232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.