BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22547794)

  • 1. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.
    Zhao Y; Swierk JR; Megiatto JD; Sherman B; Youngblood WJ; Qin D; Lentz DM; Moore AL; Moore TA; Gust D; Mallouk TE
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15612-6. PubMed ID: 22547794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting.
    Ye S; Ding C; Chen R; Fan F; Fu P; Yin H; Wang X; Wang Z; Du P; Li C
    J Am Chem Soc; 2018 Mar; 140(9):3250-3256. PubMed ID: 29338218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
    Mersch D; Lee CY; Zhang JZ; Brinkert K; Fontecilla-Camps JC; Rutherford AW; Reisner E
    J Am Chem Soc; 2015 Jul; 137(26):8541-9. PubMed ID: 26046591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Photoanodes for Photocatalytic Water Oxidation by Combining a Heterogenized Iridium Water-Oxidation Catalyst with a High-Potential Porphyrin Photosensitizer.
    Materna KL; Jiang J; Regan KP; Schmuttenmaer CA; Crabtree RH; Brudvig GW
    ChemSusChem; 2017 Nov; 10(22):4526-4534. PubMed ID: 28876510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Mechanism of a Covalently Linked Organic Dye-Cobaloxime Catalyst System for Dye-Sensitized Solar Fuel Devices.
    Pati PB; Zhang L; Philippe B; Fernández-Terán R; Ahmadi S; Tian L; Rensmo H; Hammarström L; Tian H
    ChemSusChem; 2017 Jun; 10(11):2480-2495. PubMed ID: 28338295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.
    Dau H; Zaharieva I
    Acc Chem Res; 2009 Dec; 42(12):1861-70. PubMed ID: 19908828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding Principles for Designing Highly Efficient Metal-Free Carbon Catalysts.
    Zhang L; Lin CY; Zhang D; Gong L; Zhu Y; Zhao Z; Xu Q; Li H; Xia Z
    Adv Mater; 2019 Mar; 31(13):e1805252. PubMed ID: 30536475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells.
    Shen Q; Ogomi Y; Park BW; Inoue T; Pandey SS; Miyamoto A; Fujita S; Katayama K; Toyoda T; Hayase S
    Phys Chem Chem Phys; 2012 Apr; 14(13):4605-13. PubMed ID: 22354497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of charge transfer dynamics in polypyridyl ruthenium sensitizers for solar cells and water splitting systems.
    Grądzka I; Gierszewski M; Karolczak J; Ziółek M
    Phys Chem Chem Phys; 2018 Mar; 20(11):7710-7720. PubMed ID: 29498393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge Recombination with Fractional Reaction Orders in Water-Splitting Dye-Sensitized Photoelectrochemical Cells.
    Xu P; Gray CL; Xiao L; Mallouk TE
    J Am Chem Soc; 2018 Sep; 140(37):11647-11654. PubMed ID: 30145888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation.
    Wang D; Niu F; Mortelliti MJ; Sheridan MV; Sherman BD; Zhu Y; McBride JR; Dempsey JL; Shen S; Dares CJ; Li F; Meyer TJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12564-12571. PubMed ID: 31488721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural and Artificial Mn
    Chen C; Li Y; Zhao G; Yao R; Zhang C
    ChemSusChem; 2017 Nov; 10(22):4403-4408. PubMed ID: 28921879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled electron transfers in artificial photosynthesis.
    Hammarström L; Styring S
    Philos Trans R Soc Lond B Biol Sci; 2008 Mar; 363(1494):1283-91; discussion 1291. PubMed ID: 17954432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II.
    Duan L; Bozoglian F; Mandal S; Stewart B; Privalov T; Llobet A; Sun L
    Nat Chem; 2012 Mar; 4(5):418-23. PubMed ID: 22522263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar water splitting in a molecular photoelectrochemical cell.
    Alibabaei L; Brennaman MK; Norris MR; Kalanyan B; Song W; Losego MD; Concepcion JJ; Binstead RA; Parsons GN; Meyer TJ
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20008-13. PubMed ID: 24277806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.