These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22547801)

  • 1. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes.
    Petersen KF; Dufour S; Morino K; Yoo PS; Cline GW; Shulman GI
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8236-40. PubMed ID: 22547801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents.
    Petersen KF; Dufour S; Shulman GI
    PLoS Med; 2005 Sep; 2(9):e233. PubMed ID: 16089501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.
    Petersen KF; Dufour S; Befroy D; Garcia R; Shulman GI
    N Engl J Med; 2004 Feb; 350(7):664-71. PubMed ID: 14960743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes.
    Petersen KF; Dufour S; Befroy D; Lehrke M; Hendler RE; Shulman GI
    Diabetes; 2005 Mar; 54(3):603-8. PubMed ID: 15734833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects.
    Jacob S; Machann J; Rett K; Brechtel K; Volk A; Renn W; Maerker E; Matthaei S; Schick F; Claussen CD; Häring HU
    Diabetes; 1999 May; 48(5):1113-9. PubMed ID: 10331418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.
    Morino K; Petersen KF; Dufour S; Befroy D; Frattini J; Shatzkes N; Neschen S; White MF; Bilz S; Sono S; Pypaert M; Shulman GI
    J Clin Invest; 2005 Dec; 115(12):3587-93. PubMed ID: 16284649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes.
    Perseghin G; Lattuada G; Danna M; Sereni LP; Maffi P; De Cobelli F; Battezzati A; Secchi A; Del Maschio A; Luzi L
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1174-81. PubMed ID: 12933352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle.
    Virkamäki A; Korsheninnikova E; Seppälä-Lindroos A; Vehkavaara S; Goto T; Halavaara J; Häkkinen AM; Yki-Järvinen H
    Diabetes; 2001 Oct; 50(10):2337-43. PubMed ID: 11574417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton magnetic resonance spectroscopy study of soleus muscle in non-obese healthy and Type 2 diabetic Asian Northern Indian males: high intramyocellular lipid content correlates with excess body fat and abdominal obesity.
    Misra A; Sinha S; Kumar M; Jagannathan NR; Pandey RM
    Diabet Med; 2003 May; 20(5):361-7. PubMed ID: 12752484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents.
    Perseghin G; Scifo P; De Cobelli F; Pagliato E; Battezzati A; Arcelloni C; Vanzulli A; Testolin G; Pozza G; Del Maschio A; Luzi L
    Diabetes; 1999 Aug; 48(8):1600-6. PubMed ID: 10426379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between expression of FABPpm in skeletal muscle and insulin sensitivity in intramyocellular lipid-accumulated nonobese men.
    Kawaguchi M; Tamura Y; Kakehi S; Takeno K; Sakurai Y; Watanabe T; Funayama T; Sato F; Ikeda S; Ogura Y; Saga N; Naito H; Fujitani Y; Kanazawa A; Kawamori R; Watada H
    J Clin Endocrinol Metab; 2014 Sep; 99(9):3343-52. PubMed ID: 24937540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity.
    Skovbro M; Baranowski M; Skov-Jensen C; Flint A; Dela F; Gorski J; Helge JW
    Diabetologia; 2008 Jul; 51(7):1253-60. PubMed ID: 18458871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of short-term very low-calorie diet on intramyocellular lipid and insulin sensitivity in nondiabetic and type 2 diabetic subjects.
    Lara-Castro C; Newcomer BR; Rowell J; Wallace P; Shaughnessy SM; Munoz AJ; Shiflett AM; Rigsby DY; Lawrence JC; Bohning DE; Buchthal S; Garvey WT
    Metabolism; 2008 Jan; 57(1):1-8. PubMed ID: 18078853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disassociation of liver and muscle insulin resistance from ectopic lipid accumulation in low-birth-weight individuals.
    Dufour S; Petersen KF
    J Clin Endocrinol Metab; 2011 Dec; 96(12):3873-80. PubMed ID: 21994962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of diet-induced moderate weight reduction on intrahepatic and intramyocellular triglycerides and glucose metabolism in obese subjects.
    Sato F; Tamura Y; Watada H; Kumashiro N; Igarashi Y; Uchino H; Maehara T; Kyogoku S; Sunayama S; Sato H; Hirose T; Tanaka Y; Kawamori R
    J Clin Endocrinol Metab; 2007 Aug; 92(8):3326-9. PubMed ID: 17519317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity.
    Sinha R; Dufour S; Petersen KF; LeBon V; Enoksson S; Ma YZ; Savoye M; Rothman DL; Shulman GI; Caprio S
    Diabetes; 2002 Apr; 51(4):1022-7. PubMed ID: 11916921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study.
    Ripley EM; Clarke GD; Hamidi V; Martinez RA; Settles FD; Solis C; Deng S; Abdul-Ghani M; Tripathy D; DeFronzo RA
    Am J Physiol Endocrinol Metab; 2018 Aug; 315(2):E229-E239. PubMed ID: 29509433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats.
    Kuhlmann J; Neumann-Haefelin C; Belz U; Kalisch J; Juretschke HP; Stein M; Kleinschmidt E; Kramer W; Herling AW
    Diabetes; 2003 Jan; 52(1):138-44. PubMed ID: 12502504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body and liver fat mass rather than muscle mitochondrial function determine glucose metabolism in women with a history of gestational diabetes mellitus.
    Prikoszovich T; Winzer C; Schmid AI; Szendroedi J; Chmelik M; Pacini G; Krssák M; Moser E; Funahashi T; Waldhäusl W; Kautzky-Willer A; Roden M
    Diabetes Care; 2011 Feb; 34(2):430-6. PubMed ID: 20978097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.