These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 22547803)
1. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Koide M; Bonev AD; Nelson MT; Wellman GC Proc Natl Acad Sci U S A; 2012 May; 109(21):E1387-95. PubMed ID: 22547803 [TBL] [Abstract][Full Text] [Related]
2. Astrocyte Ca2+ Signaling Drives Inversion of Neurovascular Coupling after Subarachnoid Hemorrhage. Pappas AC; Koide M; Wellman GC J Neurosci; 2015 Sep; 35(39):13375-84. PubMed ID: 26424885 [TBL] [Abstract][Full Text] [Related]
3. Subarachnoid blood converts neurally evoked vasodilation to vasoconstriction in rat brain cortex. Koide M; Bonev AD; Nelson MT; Wellman GC Acta Neurochir Suppl; 2013; 115():167-71. PubMed ID: 22890664 [TBL] [Abstract][Full Text] [Related]
4. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Girouard H; Bonev AD; Hannah RM; Meredith A; Aldrich RW; Nelson MT Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3811-6. PubMed ID: 20133576 [TBL] [Abstract][Full Text] [Related]
5. Activation of TRPV4 channels does not mediate inversion of neurovascular coupling after SAH. Koide M; Wellman GC Acta Neurochir Suppl; 2015; 120():111-6. PubMed ID: 25366609 [TBL] [Abstract][Full Text] [Related]
6. Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage. Pappas AC; Koide M; Wellman GC J Cereb Blood Flow Metab; 2016 Nov; 36(11):1901-1912. PubMed ID: 27207166 [TBL] [Abstract][Full Text] [Related]
7. Local potassium signaling couples neuronal activity to vasodilation in the brain. Filosa JA; Bonev AD; Straub SV; Meredith AL; Wilkerson MK; Aldrich RW; Nelson MT Nat Neurosci; 2006 Nov; 9(11):1397-1403. PubMed ID: 17013381 [TBL] [Abstract][Full Text] [Related]
8. Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage. Jahromi BS; Aihara Y; Ai J; Zhang ZD; Weyer G; Nikitina E; Yassari R; Houamed KM; Macdonald RL J Vasc Res; 2008; 45(5):402-15. PubMed ID: 18401179 [TBL] [Abstract][Full Text] [Related]
9. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767 [TBL] [Abstract][Full Text] [Related]
10. Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone. Koide M; Nystoriak MA; Krishnamoorthy G; O'Connor KP; Bonev AD; Nelson MT; Wellman GC J Cereb Blood Flow Metab; 2011 Jan; 31(1):3-16. PubMed ID: 20736958 [TBL] [Abstract][Full Text] [Related]
11. Dynamic inositol trisphosphate-mediated calcium signals within astrocytic endfeet underlie vasodilation of cerebral arterioles. Straub SV; Bonev AD; Wilkerson MK; Nelson MT J Gen Physiol; 2006 Dec; 128(6):659-69. PubMed ID: 17130519 [TBL] [Abstract][Full Text] [Related]
12. Impact of subarachnoid hemorrhage on parenchymal arteriolar function. Wellman GC; Koide M Acta Neurochir Suppl; 2013; 115():173-7. PubMed ID: 22890665 [TBL] [Abstract][Full Text] [Related]
13. Acute changes in neurovascular reactivity after subarachnoid hemorrhage in vivo. Balbi M; Koide M; Schwarzmaier SM; Wellman GC; Plesnila N J Cereb Blood Flow Metab; 2017 Jan; 37(1):178-187. PubMed ID: 26676226 [TBL] [Abstract][Full Text] [Related]