BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22547815)

  • 1. Climate change impacts of US reactive nitrogen.
    Pinder RW; Davidson EA; Goodale CL; Greaver TL; Herrick JD; Liu L
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7671-5. PubMed ID: 22547815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of reactive nitrogen on climate change in China.
    Shi Y; Cui S; Ju X; Cai Z; Zhu YG
    Sci Rep; 2015 Jan; 5():8118. PubMed ID: 25631557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.
    Tang X; Wilson SR; Solomon KR; Shao M; Madronich S
    Photochem Photobiol Sci; 2011 Feb; 10(2):280-91. PubMed ID: 21253665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Net greenhouse gas balance in U.S. croplands: How can soils be part of the climate solution?
    You Y; Tian H; Pan S; Shi H; Lu C; Batchelor WD; Cheng B; Hui D; Kicklighter D; Liang XZ; Li X; Melillo J; Pan N; Prior SA; Reilly J
    Glob Chang Biol; 2024 Jan; 30(1):e17109. PubMed ID: 38273550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.
    Campbell P; Zhang Y; Yan F; Lu Z; Streets D
    Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate and air-quality benefits of a realistic phase-out of fossil fuels.
    Shindell D; Smith CJ
    Nature; 2019 Sep; 573(7774):408-411. PubMed ID: 31534245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven estimates of fertilizer-induced soil NH
    Ma R; Yu K; Xiao S; Liu S; Ciais P; Zou J
    Glob Chang Biol; 2022 Feb; 28(3):1008-1022. PubMed ID: 34738298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent climate and air pollution impacts on Indian agriculture.
    Burney J; Ramanathan V
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16319-24. PubMed ID: 25368149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of agriculture upon the air quality and climate: research, policy, and regulations.
    Aneja VP; Schlesinger WH; Erisman JW
    Environ Sci Technol; 2009 Jun; 43(12):4234-40. PubMed ID: 19603628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The global nitrogen cycle in the twenty-first century.
    Fowler D; Coyle M; Skiba U; Sutton MA; Cape JN; Reis S; Sheppard LJ; Jenkins A; Grizzetti B; Galloway JN; Vitousek P; Leach A; Bouwman AF; Butterbach-Bahl K; Dentener F; Stevenson D; Amann M; Voss M
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1621):20130164. PubMed ID: 23713126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global temperature responses to current emissions from the transport sectors.
    Berntsen T; Fuglestvedt J
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19154-9. PubMed ID: 19047640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of climate and land use on N
    Gütlein A; Gerschlauer F; Kikoti I; Kiese R
    Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air quality and climate connections.
    Fiore AM; Naik V; Leibensperger EM
    J Air Waste Manag Assoc; 2015 Jun; 65(6):645-85. PubMed ID: 25976481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Modeling of U.S. Agricultural Soil Emissions of Reactive Nitrogen and Associated Impacts on Air Pollution, Health, and Climate.
    Luo L; Ran L; Rasool QZ; Cohan DS
    Environ Sci Technol; 2022 Jul; 56(13):9265-9276. PubMed ID: 35712939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment.
    Fagodiya RK; Pathak H; Kumar A; Bhatia A; Jain N
    Sci Rep; 2017 Mar; 7():44928. PubMed ID: 28322322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA.
    Graves RA; Haugo RD; Holz A; Nielsen-Pincus M; Jones A; Kellogg B; Macdonald C; Popper K; Schindel M
    PLoS One; 2020; 15(4):e0230424. PubMed ID: 32275725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global air quality and climate.
    Fiore AM; Naik V; Spracklen DV; Steiner A; Unger N; Prather M; Bergmann D; Cameron-Smith PJ; Cionni I; Collins WJ; Dalsøren S; Eyring V; Folberth GA; Ginoux P; Horowitz LW; Josse B; Lamarque JF; MacKenzie IA; Nagashima T; O'Connor FM; Righi M; Rumbold ST; Shindell DT; Skeie RB; Sudo K; Szopa S; Takemura T; Zeng G
    Chem Soc Rev; 2012 Oct; 41(19):6663-83. PubMed ID: 22868337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis.
    Gao H; Tian H; Zhang Z; Xia X
    Sci Total Environ; 2022 May; 820():153288. PubMed ID: 35066045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lancet Countdown on health benefits from the UK Climate Change Act: a modelling study for Great Britain.
    Williams ML; Lott MC; Kitwiroon N; Dajnak D; Walton H; Holland M; Pye S; Fecht D; Toledano MB; Beevers SD
    Lancet Planet Health; 2018 May; 2(5):e202-e213. PubMed ID: 29709284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terrestrial nitrogen-carbon cycle interactions at the global scale.
    Zaehle S
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1621):20130125. PubMed ID: 23713123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.