These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22548169)

  • 1. Transcranial magnetic stimulation with the maximum voluntary muscle contraction facilitates motor neuron excitability and muscle force.
    Touge T; Urai Y; Ikeda K; Kume K; Deguchi K
    Neurol Res Int; 2012; 2012():847634. PubMed ID: 22548169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal depression of cortical excitability induced by fatiguing muscle contraction: a transcranial magnetic stimulation study.
    McKay WB; Tuel SM; Sherwood AM; Stokić DS; Dimitrijević MR
    Exp Brain Res; 1995; 105(2):276-82. PubMed ID: 7498380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue.
    Cadigan EWJ; Collins BW; Philpott DTG; Kippenhuck G; Brenton M; Button DC
    Front Physiol; 2017; 8():707. PubMed ID: 28979211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S
    Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5 Hz Repetitive Transcranial Magnetic Stimulation with Maximum Voluntary Muscle Contraction Facilitates Cerebral Cortex Excitability of Normal Subjects.
    Yin Z; Shen Y; Reinhardt JD; Chen CF; Jiang X; Dai W; Zhang W; Machado S; Arias-Carrion O; Yuan TF; Shan C
    CNS Neurol Disord Drug Targets; 2015; 14(10):1298-303. PubMed ID: 26556078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary activation of knee extensor muscles with transcranial magnetic stimulation.
    Nuzzo JL; Kennedy DS; Finn HT; Taylor JL
    J Appl Physiol (1985); 2021 Mar; 130(3):589-604. PubMed ID: 33270515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus strength related effect of transcranial magnetic stimulation on maximal voluntary contraction force of human quadriceps femoris muscle.
    Urbach D; Awiszus F
    Exp Brain Res; 2002 Jan; 142(1):25-31. PubMed ID: 11797081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fatiguing maximal voluntary contraction on excitatory and inhibitory responses elicited by transcranial magnetic motor cortex stimulation.
    McKay WB; Stokic DS; Sherwood AM; Vrbova G; Dimitrijevic MR
    Muscle Nerve; 1996 Aug; 19(8):1017-24. PubMed ID: 8756168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemispheric differences in motor cortex excitability during a simple index finger abduction task in humans.
    Semmler JG; Nordstrom MA
    J Neurophysiol; 1998 Mar; 79(3):1246-54. PubMed ID: 9497406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute Effect of Noradrenergic Modulation on Motor Output Adjustment in Men.
    Klass M; Roelands B; Meeusen R; Duchateau J
    Med Sci Sports Exerc; 2018 Aug; 50(8):1579-1587. PubMed ID: 29570538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions.
    Uehara K; Morishita T; Kubota S; Funase K
    PLoS One; 2013; 8(1):e55083. PubMed ID: 23383063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW; Gale LH; Buckle NCM; Button DC
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of shoulder position on motor evoked and maximal muscle compound action potentials of the biceps brachii.
    Collins BW; Button DC
    Neurosci Lett; 2018 Feb; 665():206-211. PubMed ID: 29229395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voluntary breathing influences corticospinal excitability of nonrespiratory finger muscles.
    Li S; Rymer WZ
    J Neurophysiol; 2011 Feb; 105(2):512-21. PubMed ID: 21160006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise.
    Gruet M; Temesi J; Rupp T; Levy P; Verges S; Millet GY
    Exp Physiol; 2014 Aug; 99(8):1053-64. PubMed ID: 24907029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle.
    Zijdewind I; Zwarts MJ; Kernell D
    Exp Brain Res; 2000 Feb; 130(4):529-32. PubMed ID: 10717794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote facilitation of supraspinal motor excitability depends on the level of effort.
    Tazoe T; Sakamoto M; Nakajima T; Endoh T; Shiozawa S; Komiyama T
    Eur J Neurosci; 2009 Oct; 30(7):1297-305. PubMed ID: 19769593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.