BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22548243)

  • 1. Numerical simulation of the insertion process of an uncemented hip prosthesis in order to evaluate the influence of residual stress and contact distribution on the stem initial stability.
    Monea AG; Pastrav LC; Mulier M; Van der Perre G; Jaecques SV
    Comput Methods Biomech Biomed Engin; 2014; 17(3):263-76. PubMed ID: 22548243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem geometry changes initial femoral fixation stability of a revised press-fit hip prosthesis: A finite element study.
    Russell RD; Huo MH; Rodrigues DC; Kosmopoulos V
    Technol Health Care; 2016 Nov; 24(6):865-872. PubMed ID: 27434281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of contact ratio and its location on the primary stability of cementless total hip arthroplasty: A finite element analysis.
    Reimeringer M; Nuño N
    J Biomech; 2016 May; 49(7):1064-1070. PubMed ID: 26920509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Three-dimensional finite element analysis on mechanical behavior of the bone remodeling and bone integration between the bone-implant interface after hip replacement].
    Li YJ; Zhang LC; Zhang MC; Yang GJ; Lin RX; Cai CY; Zhong SZ
    Zhongguo Gu Shang; 2014 Apr; 27(4):316-20. PubMed ID: 25029841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction and stem stiffness affect dynamic interface motion in total hip replacement.
    Kuiper JH; Huiskes R
    J Orthop Res; 1996 Jan; 14(1):36-43. PubMed ID: 8618164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: finite element model.
    Shultz TR; Blaha JD; Gruen TA; Norman TL
    J Biomech Eng; 2006 Feb; 128(1):7-12. PubMed ID: 16532611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ingrowth regions on bone remodelling around a cementless hip resurfacing femoral implant.
    Haider IT; Speirs AD; Beaulé PE; Frei H
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1349-57. PubMed ID: 24697332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of porous coating and collar support on early load transfer for a cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Biomech; 1993 Oct; 26(10):1205-16. PubMed ID: 8253825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling.
    Pal B; Gupta S; New AM
    Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling debonded stem-cement interface for hip implants: effect of residual stresses.
    Nuño N; Amabili M
    Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):41-8. PubMed ID: 11779645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the secondary stability of coated cementless hip replacement: parameters that affected interface strength.
    Orlik J; Zhurov A; Middleton J
    Med Eng Phys; 2003 Dec; 25(10):825-31. PubMed ID: 14630470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D finite element model of the impaction of a press-fitted femoral stem under various biomechanical environments.
    Poudrel AS; Bouffandeau A; Rosi G; Dubory A; Lachaniette CF; Nguyen VH; Haiat G
    Comput Biol Med; 2024 May; 174():108405. PubMed ID: 38613890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the press-fit insertion of an acetabular cup by impact measurements: influence of bone abrasion.
    Michel A; Bosc R; Mathieu V; Hernigou P; Haiat G
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1027-34. PubMed ID: 25258009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment.
    Ramamurti BS; Orr TE; Bragdon CR; Lowenstein JD; Jasty M; Harris WH
    J Biomed Mater Res; 1997 Aug; 36(2):274-80. PubMed ID: 9261690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model.
    Folgado J; Fernandes PR; Jacobs CR; Pellegrini VD
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):135-45. PubMed ID: 19242833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the fixation region of a press-fit hip endoprosthesis on the stress-strain state of the "bone-implant" system.
    Levadnyi I; Awrejcewicz J; Goethel MF; Loskutov A
    Comput Biol Med; 2017 May; 84():195-204. PubMed ID: 28390287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.