BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22548282)

  • 1. 64Cu Core-labeled nanoparticles with high specific activity via metal-free click chemistry.
    Zeng D; Lee NS; Liu Y; Zhou D; Dence CS; Wooley KL; Katzenellenbogen JA; Welch MJ
    ACS Nano; 2012 Jun; 6(6):5209-19. PubMed ID: 22548282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New routes to Cu(I)/Cu nanocatalysts for the multicomponent click synthesis of 1,2,3-triazoles.
    Abdulkin P; Moglie Y; Knappett BR; Jefferson DA; Yus M; Alonso F; Wheatley AE
    Nanoscale; 2013 Jan; 5(1):342-50. PubMed ID: 23166008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers.
    Jian X; Jiang M; Zhou Z; Zeng Q; Lu J; Wang D; Zhu J; Gou J; Wang Y; Hui D; Yang M
    ACS Nano; 2012 Oct; 6(10):8611-9. PubMed ID: 22963353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition "click" reaction.
    Cardiel AC; Benson MC; Bishop LM; Louis KM; Yeager JC; Tan Y; Hamers RJ
    ACS Nano; 2012 Jan; 6(1):310-8. PubMed ID: 22196212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles.
    Wu T; Gao J; Xu X; Wang W; Gao C; Qiu H
    Nanotechnology; 2013 May; 24(21):215604. PubMed ID: 23619742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of copper nanoparticles with controlled sizes by reverse micelle method.
    Yu T; Koh T; Lim B
    J Nanosci Nanotechnol; 2013 May; 13(5):3250-3. PubMed ID: 23858839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for MicroPET imaging.
    Lee DE; Na JH; Lee S; Kang CM; Kim HN; Han SJ; Kim H; Choe YS; Jung KH; Lee KC; Choi K; Kwon IC; Jeong SY; Lee KH; Kim K
    Mol Pharm; 2013 Jun; 10(6):2190-8. PubMed ID: 23586421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of conducting polyaniline-copper composites.
    Liu A; Bac LH; Kim JS; Kim BK; Kim JC
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7728-33. PubMed ID: 24245323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes.
    Lee Y; Jang S; Cho CW; Bae JS; Park S; Park KH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7477-81. PubMed ID: 24245277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The growth and enhanced catalytic performance of Au@Pd core-shell nanodendrites.
    Wang H; Sun Z; Yang Y; Su D
    Nanoscale; 2013 Jan; 5(1):139-42. PubMed ID: 23149579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant Activity of Telmisartan-Cu(II) Nanoparticles Connected 2-Pyrimidinamine and Their Evaluation of Cytotoxicity Activities.
    Surendrakumar R; Idhayadhulla A; Alarifi S; Ahamed NA; Sathish Kumar C
    Biomed Res Int; 2020; 2020():8872479. PubMed ID: 33282956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ashing conditions and optimization of nano process integration in copper/porous low-k nano-interconnects.
    Pyo SG; Kim SW
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8401-6. PubMed ID: 23421222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials.
    Yuan H; Wilks MQ; El Fakhri G; Normandin MD; Kaittanis C; Josephson L
    PLoS One; 2017; 12(2):e0172722. PubMed ID: 28225818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation.
    Hervella P; Parra E; Needham D
    Eur J Pharm Biopharm; 2016 May; 102():64-76. PubMed ID: 26925504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.
    Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A
    Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-hydrophilic block copolymer nanoreactor for the synthesis of copper nanoparticles and for application in click chemistry.
    Kim A; Sharma B; Kim BS; Park KH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6162-6. PubMed ID: 22121678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts.
    Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M
    Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides.
    Das R; Pachfule P; Banerjee R; Poddar P
    Nanoscale; 2012 Jan; 4(2):591-9. PubMed ID: 22143166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation.
    Saboktakin M; Ye X; Oh SJ; Hong SH; Fafarman AT; Chettiar UK; Engheta N; Murray CB; Kagan CR
    ACS Nano; 2012 Oct; 6(10):8758-66. PubMed ID: 22967489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene decoration with metal nanoparticles: towards easy integration for sensing applications.
    Gutés A; Hsia B; Sussman A; Mickelson W; Zettl A; Carraro C; Maboudian R
    Nanoscale; 2012 Jan; 4(2):438-40. PubMed ID: 22147241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.