BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22548325)

  • 1. Morphology-dependent energy transfer dynamics in fluorene-based amphiphile nanoparticles.
    Stevens AL; Kaeser A; Schenning AP; Herz LM
    ACS Nano; 2012 Jun; 6(6):4777-87. PubMed ID: 22548325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins.
    Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ
    J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles.
    Wu C; Peng H; Jiang Y; McNeill J
    J Phys Chem B; 2006 Jul; 110(29):14148-54. PubMed ID: 16854113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations.
    Tripathy U; Bisht PB
    J Chem Phys; 2006 Oct; 125(14):144502. PubMed ID: 17042604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments.
    Casanova D; Giaume D; Gacoin T; Boilot JP; Alexandrou A
    J Phys Chem B; 2006 Oct; 110(39):19264-70. PubMed ID: 17004778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescence of 2,7-poly(9,9-dialkylfluorene-co-fluorenone) nanoparticles: effect of particle size and inert polymer addition.
    Pras O; Chaussy D; Stephan O; Rharbi Y; Piette P; Beneventi D
    Langmuir; 2010 Sep; 26(18):14437-42. PubMed ID: 20799754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer processes along a supramolecular chain of π-conjugated molecules.
    Schmid SA; Abbel R; Schenning AP; Meijer EW; Herz LM
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3787-801. PubMed ID: 22753826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon photochromism of a diarylethene enhanced by Förster resonance energy transfer from two-photon absorbing fluorenes.
    Belfield KD; Bondar MV; Corredor CC; Hernandez FE; Przhonska OV; Yao S
    Chemphyschem; 2006 Dec; 7(12):2514-9. PubMed ID: 17099923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of diffusion in excitation energy transfer and migration.
    Misra V; Mishra H
    J Chem Phys; 2007 Sep; 127(9):094511. PubMed ID: 17824752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy.
    Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient excitation-energy transfer in ion-based organic nanoparticles with versatile tunability of the fluorescence colours.
    Yao H; Ashiba K
    Chemphyschem; 2012 Aug; 13(11):2703-10. PubMed ID: 22674683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does Förster theory predict the rate of electronic energy transfer for a model dyad at low temperature?
    Curutchet C; Mennucci B; Scholes GD; Beljonne D
    J Phys Chem B; 2008 Mar; 112(12):3759-66. PubMed ID: 18318527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein quantification using resonance energy transfer between donor nanoparticles and acceptor quantum dots.
    Härmä H; Pihlasalo S; Cywinski PJ; Mikkonen P; Hammann T; Löhmannsröben HG; Hänninen P
    Anal Chem; 2013 Mar; 85(5):2921-6. PubMed ID: 23391291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced electron transfer and nonlinear absorption in poly(carbazole-alt-2,7-fluorene)s bearing perylene diimides as pendant acceptors.
    Huang C; Sartin MM; Cozzuol M; Siegel N; Barlow S; Perry JW; Marder SR
    J Phys Chem A; 2012 May; 116(17):4305-17. PubMed ID: 22533861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances.
    Vogel KW; Vedvik KL
    J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the intramolecular charge transfer emission from deep blue to green in ambipolar systems based on dibenzothiophene S,S-dioxide by manipulation of conjugation and strength of the electron donor units.
    Moss KC; Bourdakos KN; Bhalla V; Kamtekar KT; Bryce MR; Fox MA; Vaughan HL; Dias FB; Monkman AP
    J Org Chem; 2010 Oct; 75(20):6771-81. PubMed ID: 20860348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.