These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22548326)
41. Multilevel IRT using dichotomous and polytomous response data. Fox JP Br J Math Stat Psychol; 2005 May; 58(Pt 1):145-72. PubMed ID: 15969844 [TBL] [Abstract][Full Text] [Related]
42. The consistency of ordinary least-squares and generalized least-squares polynomial regression on characterizing the mechanomyographic amplitude versus torque relationship. Herda TJ; Housh TJ; Weir JP; Ryan ED; Costa PB; Defreitas JM; Walter AA; Stout JR; Beck TW; Cramer JT Physiol Meas; 2009 Feb; 30(2):115-28. PubMed ID: 19136735 [TBL] [Abstract][Full Text] [Related]
43. Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption. Edlinger M; van Smeden M; Alber HF; Wanitschek M; Van Calster B Stat Med; 2022 Apr; 41(8):1334-1360. PubMed ID: 34897756 [TBL] [Abstract][Full Text] [Related]
44. Testing logistic regression coefficients with clustered data and few positive outcomes. Hunsberger S; Graubard BI; Korn EL Stat Med; 2008 Apr; 27(8):1305-24. PubMed ID: 17705348 [TBL] [Abstract][Full Text] [Related]
45. Non-linear structural equation models with correlated continuous and discrete data. Lee SY; Song XY; Cai JH; So WY; Ma CW; Chan CN Br J Math Stat Psychol; 2009 May; 62(Pt 2):327-47. PubMed ID: 18590605 [TBL] [Abstract][Full Text] [Related]
46. Statistical modeling of a ligand knowledge base. Mansson RA; Welsh AH; Fey N; Orpen AG J Chem Inf Model; 2006; 46(6):2591-600. PubMed ID: 17125199 [TBL] [Abstract][Full Text] [Related]
47. Partial least squares path modelling for relations between baseline factors and treatment outcomes in periodontal regeneration. Tu YK; Gilthorpe MS; D' Aiuto F; Woolston A; Clerehugh V J Clin Periodontol; 2009 Nov; 36(11):984-95. PubMed ID: 19811583 [TBL] [Abstract][Full Text] [Related]
48. Methods for analyzing data from probabilistic linkage strategies based on partially identifying variables. Hof MH; Zwinderman AH Stat Med; 2012 Dec; 31(30):4231-42. PubMed ID: 22807060 [TBL] [Abstract][Full Text] [Related]
49. Binary recursive partitioning: background, methods, and application to psychology. Merkle EC; Shaffer VA Br J Math Stat Psychol; 2011 Feb; 64(Pt 1):161-81. PubMed ID: 21506949 [TBL] [Abstract][Full Text] [Related]
50. Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. Marrie RA; Dawson NV; Garland A J Clin Epidemiol; 2009 May; 62(5):511-7.e1. PubMed ID: 19135859 [TBL] [Abstract][Full Text] [Related]
51. An eigenvector method for estimating item parameters of the dichotomous and polytomous Rasch models. Garner M J Appl Meas; 2002; 3(2):107-28. PubMed ID: 12011497 [TBL] [Abstract][Full Text] [Related]
52. Maternal periodontal disease and preterm or extreme preterm birth: an ordinal logistic regression analysis. GuimarĂ£es AN; Silva-Mato A; Miranda Cota LO; Siqueira FM; Costa FO J Periodontol; 2010 Mar; 81(3):350-8. PubMed ID: 20192860 [TBL] [Abstract][Full Text] [Related]
53. Fuzzy least squares for identification of individual pharmacokinetic parameters. Seng KY; Nestorov I; Vicini P IEEE Trans Biomed Eng; 2009 Dec; 56(12):2796-805. PubMed ID: 19695981 [TBL] [Abstract][Full Text] [Related]
54. MCMC estimation for the p(2) network regression model with crossed random effects. Zijlstra BJ; van Duijn MA; Snijders TA Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):143-66. PubMed ID: 19208289 [TBL] [Abstract][Full Text] [Related]
55. The proportional odds with partial proportionality constraints model for ordinal response variables. Fullerton AS; Xu J Soc Sci Res; 2012 Jan; 41(1):182-98. PubMed ID: 23017706 [TBL] [Abstract][Full Text] [Related]
56. Bayesian analysis of mixtures in structural equation models with non-ignorable missing data. Cai JH; Song XY Br J Math Stat Psychol; 2010 Nov; 63(Pt 3):491-508. PubMed ID: 20030969 [TBL] [Abstract][Full Text] [Related]
57. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data. Wilderjans TF; Vande Gaer E; Kiers HA; Van Mechelen I; Ceulemans E Psychometrika; 2017 Mar; 82(1):86-111. PubMed ID: 27905056 [TBL] [Abstract][Full Text] [Related]
58. Using heteroskedasticity-consistent standard error estimators in OLS regression: an introduction and software implementation. Hayes AF; Cai L Behav Res Methods; 2007 Nov; 39(4):709-22. PubMed ID: 18183883 [TBL] [Abstract][Full Text] [Related]
59. Multivariate fixed- and random-effects models for summarizing ordinal data in meta-analysis of diagnostic staging studies. Bipat S; Zwinderman AH Res Synth Methods; 2010 Apr; 1(2):136-48. PubMed ID: 26061379 [TBL] [Abstract][Full Text] [Related]
60. More efficient parameter estimates for factor analysis of ordinal variables by ridge generalized least squares. Yuan KH; Jiang G; Cheng Y Br J Math Stat Psychol; 2017 Nov; 70(3):525-564. PubMed ID: 28547838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]