These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22548349)

  • 1. Modified feed-forward neural network structures and combined-function-derivative approximations incorporating exchange symmetry for potential energy surface fitting.
    Nguyen HT; Le HM
    J Phys Chem A; 2012 May; 116(18):4629-38. PubMed ID: 22548349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.
    Le HM; Dinh TS; Le HV
    J Phys Chem A; 2011 Oct; 115(40):10862-70. PubMed ID: 21888438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cis-->trans, trans-->cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting.
    Le HM; Raff LM
    J Chem Phys; 2008 May; 128(19):194310. PubMed ID: 18500868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting.
    Le HM; Huynh S; Raff LM
    J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Agrawal PM; Komanduri R
    J Chem Phys; 2009 May; 130(18):184102. PubMed ID: 19449903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics investigation of the bimolecular reaction BeH + H(2) --> BeH(2) + H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination.
    Le HM; Raff LM
    J Phys Chem A; 2010 Jan; 114(1):45-53. PubMed ID: 19852450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases.
    Malshe M; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2010 May; 132(20):204103. PubMed ID: 20515084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametrization of analytic interatomic potential functions using neural networks.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2008 Jul; 129(4):044111. PubMed ID: 18681638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks.
    Pukrittayakamee A; Malshe M; Hagan M; Raff LM; Narulkar R; Bukkapatnum S; Komanduri R
    J Chem Phys; 2009 Apr; 130(13):134101. PubMed ID: 19355711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio Investigation of O-H Dissociation from the Al-OH2 Complex Using Molecular Dynamics and Neural Network Fitting.
    Ho TH; Pham-Tran NN; Kawazoe Y; Le HM
    J Phys Chem A; 2016 Jan; 120(3):346-55. PubMed ID: 26741404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin RM; Lomakina EI
    Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nested molecule-independent neural network approach for high-quality potential fits.
    Manzhos S; Wang X; Dawes R; Carrington T
    J Phys Chem A; 2006 Apr; 110(16):5295-304. PubMed ID: 16623455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward eliminating the electronic structure bottleneck in nonadiabatic dynamics on the fly: an algorithm to fit nonlocal, quasidiabatic, coupled electronic state Hamiltonians based on ab initio electronic structure data.
    Zhu X; Yarkony DR
    J Chem Phys; 2010 Mar; 132(10):104101. PubMed ID: 20232941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems.
    Li J; Jiang B; Guo H
    J Chem Phys; 2013 Nov; 139(20):204103. PubMed ID: 24289340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nine-dimensional global potential energy surface for NH4(X(2)A(1)) and kinetics studies on the H + NH3↔ H2 + NH2 reaction.
    Li J; Guo H
    Phys Chem Chem Phys; 2014 Apr; 16(14):6753-63. PubMed ID: 24590183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions.
    Jiang B; Guo H
    J Chem Phys; 2014 Jul; 141(3):034109. PubMed ID: 25053303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.
    Li J; Guo H
    J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster.
    Barragán P; Prosmiti R; Wang Y; Bowman JM
    J Chem Phys; 2012 Jun; 136(22):224302. PubMed ID: 22713042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.