BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

795 related articles for article (PubMed ID: 22548418)

  • 21. Extent of pyrolysis impacts on fast pyrolysis biochar properties.
    Brewer CE; Hu YY; Schmidt-Rohr K; Loynachan TE; Laird DA; Brown RC
    J Environ Qual; 2012; 41(4):1115-22. PubMed ID: 22751053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings.
    Zheng RL; Cai C; Liang JH; Huang Q; Chen Z; Huang YZ; Arp HP; Sun GX
    Chemosphere; 2012 Oct; 89(7):856-62. PubMed ID: 22664390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol.
    Jiang J; Xu RK; Jiang TY; Li Z
    J Hazard Mater; 2012 Aug; 229-230():145-50. PubMed ID: 22704774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment.
    Tsai WT; Liu SC; Chen HR; Chang YM; Tsai YL
    Chemosphere; 2012 Sep; 89(2):198-203. PubMed ID: 22743180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of coexisting Al(III) ions on Pb(II) sorption on biochars: Role of pH buffer and competition.
    Yang Y; Zhang W; Qiu H; Tsang DCW; Morel JL; Qiu R
    Chemosphere; 2016 Oct; 161():438-445. PubMed ID: 27454898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.
    Manolikaki II; Mangolis A; Diamadopoulos E
    J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil.
    Rajapaksha AU; Ahmad M; Vithanage M; Kim KR; Chang JY; Lee SS; Ok YS
    Environ Geochem Health; 2015 Dec; 37(6):931-42. PubMed ID: 25794596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of biochar on nitrogen fractions in a coastal plain soil.
    Schomberg HH; Gaskin JW; Harris K; Das KC; Novak JM; Busscher WJ; Watts DW; Woodroof RH; Lima IM; Ahmedna M; Rehrah D; Xing B
    J Environ Qual; 2012; 41(4):1087-95. PubMed ID: 22751050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-pyrolysis of alkali-fused fly ash and corn stover to synthesize biochar composites for remediating lead-contaminated soil.
    Ma Y; Shang X; Zhang Y; Chen W; Gao Y; Guo J; Zheng H; Xing B
    Environ Res; 2024 Jul; 252(Pt 2):118938. PubMed ID: 38649014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure.
    Shen X; Zeng J; Zhang D; Wang F; Li Y; Yi W
    Sci Total Environ; 2020 Feb; 704():135283. PubMed ID: 31822406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil.
    Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z
    Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil.
    Méndez A; Gómez A; Paz-Ferreiro J; Gascó G
    Chemosphere; 2012 Nov; 89(11):1354-9. PubMed ID: 22732302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene.
    Zhang H; Lin K; Wang H; Gan J
    Environ Pollut; 2010 Sep; 158(9):2821-5. PubMed ID: 20638165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar.
    Beesley L; Marmiroli M
    Environ Pollut; 2011 Feb; 159(2):474-80. PubMed ID: 21109337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature.
    Singh BP; Cowie AL; Smernik RJ
    Environ Sci Technol; 2012 Nov; 46(21):11770-8. PubMed ID: 23013285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil.
    Mohamed BA; Ellis N; Kim CS; Bi X
    Environ Pollut; 2017 Nov; 230():329-338. PubMed ID: 28668594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils.
    Beesley L; Moreno-Jiménez E; Gomez-Eyles JL; Harris E; Robinson B; Sizmur T
    Environ Pollut; 2011 Dec; 159(12):3269-82. PubMed ID: 21855187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar.
    Khanmohammadi Z; Afyuni M; Mosaddeghi MR
    Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.