BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 22548441)

  • 1. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.
    Rykaczewski K
    Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.
    Rykaczewski K; Chinn J; Walker ML; Scott JH; Chinn A; Jones W
    ACS Nano; 2011 Dec; 5(12):9746-54. PubMed ID: 22035295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.
    Ölçeroğlu E; Hsieh CY; Rahman MM; Lau KK; McCarthy M
    Langmuir; 2014 Jul; 30(25):7556-66. PubMed ID: 24882117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.
    Anderson DM; Gupta MK; Voevodin AA; Hunter CN; Putnam SA; Tsukruk VV; Fedorov AG
    ACS Nano; 2012 Apr; 6(4):3262-8. PubMed ID: 22456273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces.
    Rykaczewski K; Paxson AT; Anand S; Chen X; Wang Z; Varanasi KK
    Langmuir; 2013 Jan; 29(3):881-91. PubMed ID: 23259731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable.
    Lee W; Park BG; Kim DH; Ahn DJ; Park Y; Lee SH; Lee KB
    Langmuir; 2010 Feb; 26(3):1412-5. PubMed ID: 20039661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.
    Ramos SM; Dias JF; Canut B
    J Colloid Interface Sci; 2015 Feb; 440():133-9. PubMed ID: 25460699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced formation of superhydrophobic surface on which contact angle of a water droplet exceeds 170° by reversible topographical changes on a diarylethene microcrystalline surface.
    Nishikawa N; Kiyohara H; Sakiyama S; Yamazoe S; Mayama H; Tsujioka T; Kojima Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2012 Dec; 28(51):17817-24. PubMed ID: 23198739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet detachment by air flow for microstructured superhydrophobic surfaces.
    Hao P; Lv C; Yao Z
    Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.