BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22549023)

  • 41. African trypanosomes: intracellular trafficking of host defense molecules.
    Shiflett AM; Faulkner SD; Cotlin LF; Widener J; Stephens N; Hajduk SL
    J Eukaryot Microbiol; 2007; 54(1):18-21. PubMed ID: 17300512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of the proteinases of Trypanosoma brucei.
    Robertson CD; North MJ; Lockwood BC; Coombs GH
    J Gen Microbiol; 1990 May; 136(5):921-5. PubMed ID: 2199606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation and inhibition of CTP synthase from Trypanosoma brucei, the causative agent of African sleeping sickness.
    Steeves CH; Bearne SL
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5188-90. PubMed ID: 21840216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An essential signal peptide peptidase identified in an RNAi screen of serine peptidases of Trypanosoma brucei.
    Moss CX; Brown E; Hamilton A; Van der Veken P; Augustyns K; Mottram JC
    PLoS One; 2015; 10(3):e0123241. PubMed ID: 25816352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Depletion of the extracellular-signal regulated kinase 8 homolog in Trypanosoma brucei in vivo reduces its virulence in a mouse target validation study.
    Elaadli H; Kim I; Mackey ZB
    Mol Biochem Parasitol; 2018 Mar; 220():1-4. PubMed ID: 29287675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cathepsin L is required for ecotropic murine leukemia virus infection in NIH3T3 cells.
    Yoshii H; Kamiyama H; Minematsu K; Goto K; Mizota T; Oishi K; Katunuma N; Yamamoto N; Kubo Y
    Virology; 2009 Nov; 394(2):227-34. PubMed ID: 19781728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New tetromycin derivatives with anti-trypanosomal and protease inhibitory activities.
    Pimentel-Elardo SM; Buback V; Gulder TAM; Bugni TS; Reppart J; Bringmann G; Ireland CM; Schirmeister T; Hentschel U
    Mar Drugs; 2011; 9(10):1682-1697. PubMed ID: 22072992
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nicotinamide inhibits the lysosomal cathepsin b-like protease and kills African trypanosomes.
    Unciti-Broceta JD; Maceira J; Morales S; García-Pérez A; Muñóz-Torres ME; Garcia-Salcedo JA
    J Biol Chem; 2013 Apr; 288(15):10548-57. PubMed ID: 23443665
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants.
    Setzer WN; Ogungbe IV
    PLoS Negl Trop Dis; 2012; 6(7):e1727. PubMed ID: 22848767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cysteine Protease Inhibitors Produced by the Industrial Koji Mold, Aspergillus oryzae O-1018.
    Yamada T; Hiratake J; Aikawa M; Suizu T; Saito Y; Kawato A; Suginami K; Oda J
    Biosci Biotechnol Biochem; 1998; 62(5):907-14. PubMed ID: 27392587
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CA074 methyl ester: a proinhibitor for intracellular cathepsin B.
    Buttle DJ; Murata M; Knight CG; Barrett AJ
    Arch Biochem Biophys; 1992 Dec; 299(2):377-80. PubMed ID: 1444478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hypothemycin, a fungal natural product, identifies therapeutic targets in Trypanosoma brucei [corrected].
    Nishino M; Choy JW; Gushwa NN; Oses-Prieto JA; Koupparis K; Burlingame AL; Renslo AR; McKerrow JH; Taunton J
    Elife; 2013 Jul; 2():e00712. PubMed ID: 23853713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clomipramine kills Trypanosoma brucei by apoptosis.
    de Silva Rodrigues JH; Stein J; Strauss M; Rivarola HW; Ueda-Nakamura T; Nakamura CV; Duszenko M
    Int J Med Microbiol; 2016 Jun; 306(4):196-205. PubMed ID: 27086198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeted disruption of an essential RNA-binding protein perturbs cell division in Trypanosoma brucei.
    Manger ID; Boothroyd JC
    Mol Biochem Parasitol; 2001 Sep; 116(2):239-45. PubMed ID: 11522358
    [No Abstract]   [Full Text] [Related]  

  • 55. Design of an In-Cell Protein Crystal for the Environmentally Responsive Construction of a Supramolecular Filament.
    Abe S; Pham TT; Negishi H; Yamashita K; Hirata K; Ueno T
    Angew Chem Int Ed Engl; 2021 May; 60(22):12341-12345. PubMed ID: 33759310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo.
    Scory S; Stierhof YD; Caffrey CR; Steverding D
    Kinetoplastid Biol Dis; 2007 Feb; 6():2. PubMed ID: 17328798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased
    Alsford S
    Microb Cell; 2014 Aug; 1(8):270-272. PubMed ID: 27441199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A domino effect in drug action: from metabolic assault towards parasite differentiation.
    Haanstra JR; Kerkhoven EJ; van Tuijl A; Blits M; Wurst M; van Nuland R; Albert MA; Michels PA; Bouwman J; Clayton C; Westerhoff HV; Bakker BM
    Mol Microbiol; 2011 Jan; 79(1):94-108. PubMed ID: 21166896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L.
    Dana D; Pathak SK
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32041276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of the Warhead of Dipeptidyl Keto Michael Acceptors on the Inhibition Mechanism of Cysteine Protease Cathepsin L.
    Fernández-de-la-Pradilla A; Royo S; Schirmeister T; Barthels F; Świderek K; González FV; Moliner V
    ACS Catal; 2023 Oct; 13(20):13354-13368. PubMed ID: 37881790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.