These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 22549331)
1. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Babauta JT; Nguyen HD; Harrington TD; Renslow R; Beyenal H Biotechnol Bioeng; 2012 Oct; 109(10):2651-62. PubMed ID: 22549331 [TBL] [Abstract][Full Text] [Related]
2. Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes. Babauta JT; Beyenal H Biotechnol Bioeng; 2014 Feb; 111(2):285-94. PubMed ID: 23996084 [TBL] [Abstract][Full Text] [Related]
3. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Snider RM; Strycharz-Glaven SM; Tsoi SD; Erickson JS; Tender LM Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15467-72. PubMed ID: 22955881 [TBL] [Abstract][Full Text] [Related]
4. Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods. Katuri KP; Rengaraj S; Kavanagh P; O'Flaherty V; Leech D Langmuir; 2012 May; 28(20):7904-13. PubMed ID: 22524560 [TBL] [Abstract][Full Text] [Related]
5. Microbiosensor for the detection of acetate in electrode-respiring biofilms. Atci E; Babauta JT; Sultana ST; Beyenal H Biosens Bioelectron; 2016 Jul; 81():517-523. PubMed ID: 27016913 [TBL] [Abstract][Full Text] [Related]
6. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. Nevin KP; Kim BC; Glaven RH; Johnson JP; Woodard TL; Methé BA; Didonato RJ; Covalla SF; Franks AE; Liu A; Lovley DR PLoS One; 2009 May; 4(5):e5628. PubMed ID: 19461962 [TBL] [Abstract][Full Text] [Related]
7. Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth. Strycharz-Glaven SM; Tender LM ChemSusChem; 2012 Jun; 5(6):1106-18. PubMed ID: 22581467 [TBL] [Abstract][Full Text] [Related]
8. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides. Chan CH; Levar CE; Jiménez-Otero F; Bond DR J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674067 [No Abstract] [Full Text] [Related]
9. Limitations for current production in Geobacter sulfurreducens biofilms. Bonanni PS; Bradley DF; Schrott GD; Busalmen JP ChemSusChem; 2013 Apr; 6(4):711-20. PubMed ID: 23417889 [TBL] [Abstract][Full Text] [Related]
10. On the relationship between long-distance and heterogeneous electron transfer in electrode-grown Geobacter sulfurreducens biofilms. Yates MD; Eddie BJ; Lebedev N; Kotloski NJ; Strycharz-Glaven SM; Tender LM Bioelectrochemistry; 2018 Feb; 119():111-118. PubMed ID: 28963994 [TBL] [Abstract][Full Text] [Related]
11. Effect of electrode spacing on electron transfer and conductivity of Geobacter sulfurreducens biofilms. Liu P; Mohamed A; Liang P; Beyenal H Bioelectrochemistry; 2020 Feb; 131():107395. PubMed ID: 31704456 [TBL] [Abstract][Full Text] [Related]
12. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Chadwick GL; Jiménez Otero F; Gralnick JA; Bond DR; Orphan VJ Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20716-20724. PubMed ID: 31548422 [TBL] [Abstract][Full Text] [Related]
13. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Babauta JT; Nguyen HD; Beyenal H Environ Sci Technol; 2011 Aug; 45(15):6654-60. PubMed ID: 21648431 [TBL] [Abstract][Full Text] [Related]
15. Abundance of the multiheme c-type cytochrome OmcB increases in outer biofilm layers of electrode-grown Geobacter sulfurreducens. Stephen CS; LaBelle EV; Brantley SL; Bond DR PLoS One; 2014; 9(8):e104336. PubMed ID: 25090411 [TBL] [Abstract][Full Text] [Related]
16. Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Jiménez Otero F; Chadwick GL; Yates MD; Mickol RL; Saunders SH; Glaven SM; Gralnick JA; Newman DK; Tender LM; Orphan VJ; Bond DR Appl Environ Microbiol; 2021 Aug; 87(17):e0070621. PubMed ID: 34190605 [TBL] [Abstract][Full Text] [Related]
17. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Jana PS; Katuri K; Kavanagh P; Kumar A; Leech D Phys Chem Chem Phys; 2014 May; 16(19):9039-46. PubMed ID: 24695860 [TBL] [Abstract][Full Text] [Related]
18. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community. Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529 [TBL] [Abstract][Full Text] [Related]
19. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells. Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821 [TBL] [Abstract][Full Text] [Related]
20. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Korth B; Rosa LF; Harnisch F; Picioreanu C Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]