These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22549656)

  • 21. The Kenevo microprocessor-controlled prosthetic knee compared with non-microprocessor-controlled knees in individuals older than 65 years in Sweden: A cost-effectiveness and budget-impact analysis.
    Kuhlmann A; Hagberg K; Kamrad I; Ramstrand N; Seidinger S; Berg H
    Prosthet Orthot Int; 2022 Oct; 46(5):414-424. PubMed ID: 35511441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional performance differences between the Genium and C-Leg prosthetic knees and intact knees.
    Highsmith MJ; Kahle JT; Miro RM; Cress ME; Lura DJ; Quillen WS; Carey SL; Dubey RV; Mengelkoch LJ
    J Rehabil Res Dev; 2016; 53(6):753-766. PubMed ID: 27997673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Survey of transfemoral amputee experience and priorities for the user-centered design of powered robotic transfemoral prostheses.
    Fanciullacci C; McKinney Z; Monaco V; Milandri G; Davalli A; Sacchetti R; Laffranchi M; De Michieli L; Baldoni A; Mazzoni A; Paternò L; Rosini E; Reale L; Trecate F; Crea S; Vitiello N; Gruppioni E
    J Neuroeng Rehabil; 2021 Dec; 18(1):168. PubMed ID: 34863213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design, Analysis, and Development of Low-Cost State-of-the-Art Magnetorheological-Based Microprocessor Prosthetic Knee.
    Qadir MU; Haq IU; Khan MA; Shah K; Chouikhi H; Ismail MA
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The importance of orthoses on activities of daily living in patients with unilateral lower limb amputations.
    Onat SS; Ünsal-Delialioğlu S; Özel S
    J Back Musculoskelet Rehabil; 2017; 30(4):829-833. PubMed ID: 28387657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints.
    Bellmann M; Schmalz T; Blumentritt S
    Arch Phys Med Rehabil; 2010 Apr; 91(4):644-52. PubMed ID: 20382300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of microprocessor prosthetic knee on mobility and quality of life in patients with lower limb amputation: a systematic review of the literature.
    Thibaut A; Beaudart C; Maertens DE Noordhout B; Geers S; Kaux JF; Pelzer D
    Eur J Phys Rehabil Med; 2022 Jun; 58(3):452-461. PubMed ID: 35148043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking.
    Möller S; Rusaw D; Hagberg K; Ramstrand N
    Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability and Falls Evaluations in AMPutees (SAFE-AMP 1): Microprocessor knee technology reduces odds of incurring an injurious fall for individuals with diabetic/dysvascular amputation.
    Wurdeman SR; Miller TA; Stevens PM; Campbell JH
    Assist Technol; 2023 May; 35(3):205-210. PubMed ID: 34870561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees.
    Kaufman KR; Bernhardt KA; Symms K
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():116-122. PubMed ID: 30077128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking.
    Koehler-McNicholas SR; Lipschutz RD; Gard SA
    J Rehabil Res Dev; 2016; 53(6):1089-1106. PubMed ID: 28355034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation?
    Aldridge Whitehead JM; Wolf EJ; Scoville CR; Wilken JM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3093-101. PubMed ID: 24515402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prosthetic Knee Selection for Individuals with Unilateral Transfemoral Amputation: A Clinical Practice Guideline.
    Stevens PM; Wurdeman SR
    J Prosthet Orthot; 2019 Jan; 31(1):2-8. PubMed ID: 30662248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis.
    Hahn A; Bueschges S; Prager M; Kannenberg A
    Disabil Rehabil; 2022 Dec; 44(24):7349-7367. PubMed ID: 34694952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degree of Safety Against Falls Provided by 4 Different Prosthetic Knee Types in People With Transfemoral Amputation: A Retrospective Observational Study.
    Palumbo P; Randi P; Moscato S; Davalli A; Chiari L
    Phys Ther; 2022 Apr; 102(4):. PubMed ID: 35079822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of Microprocessor-Controlled Versus Non-microprocessor-Controlled Prosthetic Knee Joints Among Transfemoral Amputees on Functional Outcomes: A Comparative Study.
    Alzeer AM; Bhaskar Raj N; Shahine EM; Nadiah WA
    Cureus; 2022 Apr; 14(4):e24331. PubMed ID: 35607529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; McCrady SK; Padgett DJ; Joyner MJ
    Arch Phys Med Rehabil; 2008 Jul; 89(7):1380-5. PubMed ID: 18586142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.