BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

933 related articles for article (PubMed ID: 22549716)

  • 1. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents.
    Magesh S; Chen Y; Hu L
    Med Res Rev; 2012 Jul; 32(4):687-726. PubMed ID: 22549716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment.
    Krajka-Kuźniak V; Paluszczak J; Baer-Dubowska W
    Pharmacol Rep; 2017 Jun; 69(3):393-402. PubMed ID: 28267640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A; Arra C; Turco MC
    Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update.
    Lu MC; Ji JA; Jiang ZY; You QD
    Med Res Rev; 2016 Sep; 36(5):924-63. PubMed ID: 27192495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide and small molecule inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Wells G
    Biochem Soc Trans; 2015 Aug; 43(4):674-9. PubMed ID: 26551711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the Keap1-Nrf2 pathway in cancer.
    Leinonen HM; Kansanen E; Pölönen P; Heinäniemi M; Levonen AL
    Adv Cancer Res; 2014; 122():281-320. PubMed ID: 24974185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription.
    Jain A; Lamark T; Sjøttem E; Larsen KB; Awuh JA; Øvervatn A; McMahon M; Hayes JD; Johansen T
    J Biol Chem; 2010 Jul; 285(29):22576-91. PubMed ID: 20452972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer.
    Singh A; Misra V; Thimmulappa RK; Lee H; Ames S; Hoque MO; Herman JG; Baylin SB; Sidransky D; Gabrielson E; Brock MV; Biswal S
    PLoS Med; 2006 Oct; 3(10):e420. PubMed ID: 17020408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emerging role of the Nrf2-Keap1 signaling pathway in cancer.
    Jaramillo MC; Zhang DD
    Genes Dev; 2013 Oct; 27(20):2179-91. PubMed ID: 24142871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updated research and applications of small molecule inhibitors of Keap1-Nrf2 protein-protein interaction: a review.
    Zhuang C; Miao Z; Sheng C; Zhang W
    Curr Med Chem; 2014; 21(16):1861-70. PubMed ID: 24533814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Permeable Peptide Targeting the Nrf2-Keap1 Interaction: A Potential Novel Therapy for Global Cerebral Ischemia.
    Tu J; Zhang X; Zhu Y; Dai Y; Li N; Yang F; Zhang Q; Brann DW; Wang R
    J Neurosci; 2015 Nov; 35(44):14727-39. PubMed ID: 26538645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases.
    Joshi G; Johnson JA
    Recent Pat CNS Drug Discov; 2012 Dec; 7(3):218-29. PubMed ID: 22742419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway.
    Lau A; Whitman SA; Jaramillo MC; Zhang DD
    J Biochem Mol Toxicol; 2013 Feb; 27(2):99-105. PubMed ID: 23188707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward clinical application of the Keap1-Nrf2 pathway.
    Suzuki T; Motohashi H; Yamamoto M
    Trends Pharmacol Sci; 2013 Jun; 34(6):340-6. PubMed ID: 23664668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of the negative regulator of Nrf2, Keap1: a historical overview.
    Itoh K; Mimura J; Yamamoto M
    Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin.
    Tanigawa S; Fujii M; Hou DX
    Free Radic Biol Med; 2007 Jun; 42(11):1690-703. PubMed ID: 17462537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes.
    Zhao R; Hou Y; Zhang Q; Woods CG; Xue P; Fu J; Yarborough K; Guan D; Andersen ME; Pi J
    Environ Health Perspect; 2012 Apr; 120(4):583-9. PubMed ID: 22476201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study.
    Shanmugam T; Selvaraj M; Poomalai S
    Int Immunopharmacol; 2016 Oct; 39():128-139. PubMed ID: 27472294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.